Multiple interacting bad data errors identification in state estimation using combinatorial optimization algorithms

Authors

  • Hugo Andrés Ruiz Technological University of Pereira
  • Eliana Mirledy Toro Technological University of Pereira
  • Ramón Alfonso Gallego Technological University of Pereira

DOI:

https://doi.org/10.17533/udea.redin.14666

Keywords:

leverage points, observability, combinatorial optimization algorithms, electrical power system, state estimation

Abstract

In this paper the state estimation problem including hard detection errors are solved using combinatorial optimization algorithms. A novel procedure that combines the classic estate estimation methodology with leverage points theory which are used like sensibility factors and the observability theory are used to penalize the infeasibility in the objective function. The resultant model is solved using several optimization techniques like Tabu Search, Simulated Annealing, Particle Swarm, and the modified genetic algorithm of Chu-Beasley. In order to prove the proposed methodology the 57 nodes IEEE test system is used. The results obtained presents excellent quality.

|Abstract
= 103 veces | PDF (ESPAÑOL (ESPAÑA))
= 62 veces|

Downloads

Download data is not yet available.

References

F. C. Schweppe, J. Wildes. “Power System Static State Estimation: Parts I, II and III”. IEEE Trans. Power Syst. Vol. 89. 1970. pp 120-135. DOI: https://doi.org/10.1109/TPAS.1970.292678

A. Monticelli. “Electric Power System State Estimation”. Proceedings of the IEEE. Vol. 88. 2000. pp 262-282. DOI: https://doi.org/10.1109/5.824004

E. Asada, R. Romero, A. García. “Identifying multiple interacting bad data in power system state estimation”. Power Engineering Society General Meeting. Vol. 1. 2005. pp. 571-577.

J. Grainger, W. Stevenson. Análisis de Sistemas de Potencia. Ed. Mc Graw Hill. 1998. pp. 603-647.

A. Monticelli, F. F. Wu, M. Yen. “Multiple bad data identification for state estimation by combinatorial optimization”. IEEE Trans. Power Delivery. Vol. 1. 1986. pp. 361-369. DOI: https://doi.org/10.1109/TPWRD.1986.4308016

A. Monticelli, F. F. Wu. “Network observability: Theory”. IEEE Trans. Power Appatatus and Systems. Vol. 104. 1985. pp. 1042-1048. DOI: https://doi.org/10.1109/TPAS.1985.323454

M. Celik, A. Abur. “A robust state estimator using transformations”. IEEE Trans. on Power Systems. Vol. 7. 1992. pp. 106-113. DOI: https://doi.org/10.1109/59.141693

M. Celik, E. Liu. “An incremental measurement placement algorithm for state estimation”. IEEE Trans. on Power Systems. Vol. 10. 1995. pp 1001-1009. DOI: https://doi.org/10.1109/59.466471

R. Gallego, A. Escobar, R. Romero. Programación Lineal Entera. Taller de publicaciones Universidad Tecnológica de Pereira. Pereira. 2008. pp. 1-250.

R. Gallego, A. Escobar, E. Toro. Técnicas Metaheurísticas de Optimización. Taller de publicaciones Universidad Tecnológica de Pereira. Pereira. 2008. pp. 1- 320.

J. Kennedy, R. “Eberhart. Particle Swarm Optimization”. Proceedings of IEEE International Conference on Neural Networks. Vol. 4. 1995. pp. 1942-1948.

Published

2013-02-28

How to Cite

Ruiz, H. A., Toro, E. M., & Gallego, R. A. (2013). Multiple interacting bad data errors identification in state estimation using combinatorial optimization algorithms. Revista Facultad De Ingeniería Universidad De Antioquia, (56), 182–192. https://doi.org/10.17533/udea.redin.14666