Kinetic of fermentation and antimicrobial activity of Weissella confusa against Staphylococcus aureus and Streptococcus agalactiae
DOI:
https://doi.org/10.17533/udea.redin.14714Keywords:
antimicrobial activity, Weissella confusa, Saphylococcus aureus, Streptococcus agalactiaeAbstract
The kinetics of biomass and lactic acid production, substrate consumption, antimicrobial activity of Weissella confusa, a lactic acid bacteria with antimicrobial activity against Streptococcus agalactiae and Staphylococcus aureus, bovine-mastitis producing microorganisms, were evaluated. The fermentations were carried out anaerobically in batch using as substrate, commercial substrate (SC), milk supplemented with yeast extract (LEL) and milk supplemented with yeast extract and glucose (LELG) and the kinetic parameters were compared. The greater the inhibition of pathogens, the greater production of lactic acid and the higher yield of biomass is presented on substrate LELG. This substrate presented a diameter of inhibition of 36.33 mm for Staphylococcus aureus after the fourth hour of fermentation and 39 mm of diameter for Streptococcus agalactiae at the eighth hour of fermentation; maximum production of lactic acid was 13.12 gL-1 (at 48 h) and maximum concentration of biomass was 3.07 gL-1 (at 48 h). These results were superior to those obtained on SC where, for the same fermentation time 24.38 mm for Staphylococcus aureus and 30.58 mm diameter of inhibition for Streptococcus agalactiae were obtained; the highest lactic acid production was 11,6 gL-1 (at 12h) and the highest concentration of biomass was 1.18 gL-1(at 24 h). The results suggest that LELG may become a low cost alternative for the production of Weissella confusa, microorganism with great potential for control and treatment of bovine mastitis.
Downloads
References
K. J. Björkroth, U. Schillinger, R. Geisen, N. Weiss, B. Hoste, W. H. Holzapfel, H. J. Korkeala, P. Vandamme. “Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples.” Int. J. Syst. Evol. Micr. Vol. 52. 2002. pp. 141-148. DOI: https://doi.org/10.1099/00207713-52-1-141
F. Dellaglio, S. Torriani. “DNA-DNA homology, physiological characteristics and distribution of lactic acid bacteria from maize silage.” J. Appl. Bacteriol. Vol. 60. 1986. pp. 83-93. DOI: https://doi.org/10.1111/j.1365-2672.1986.tb03363.x
M. D. Collins, J. Samelis, J. Metaxopoulos, S. Wallbanks. “Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species.” J. Appl. Bacteriol. Vol. 75. 1993. pp. 595-603. DOI: https://doi.org/10.1111/j.1365-2672.1993.tb01600.x
Y. Lee. “Characterization of Weissella kimchii PL9023 as a potential probiotic for women.” FEMS Microbiol. Lett. Vol. 250. 2005. pp. 157-162. DOI: https://doi.org/10.1016/j.femsle.2005.07.009
S. Matamoros, M. F. Pilet, F. Gigout, H. Prévost, F. Leroi. “Selection and evaluation of seafood-borne psychrotrophic lactic acid bacteria as inhibitors of pathogenic and spoilage bacteria.” Food Microbiol. Vol. 26. 2009. pp. 638-644. DOI: https://doi.org/10.1016/j.fm.2009.04.011
I. F. Nes, V. G. H. Eijsink. “Regulation of group II peptide bacteriocin synthesis by quorum sensing mechanisms. Dunny, G.M., Winans, S.C. (Eds.). Cell-Cell Signaling in Bacteria. Ed. American Society for Microbiology Press. Washington DC. 1999. pp. 175-192.
S. Srionnual, F. Yanagida, L. H. Lin, K. N. Hsiao, Y. S. Chen. “Weissellicin 110, a Newly Discovered Bacteriocin from Weissella cibaria 110, Isolated from Plaa-Som, a Fermented Fish Product from Thailand.” Appl Environ. Microb. Vol. 73. 2007. pp. 2247-2250. DOI: https://doi.org/10.1128/AEM.02484-06
M. C. Espeche, M. C. Otero, F. Sesma, M. E. F. Nader- Macias. “Screening of surface properties and antagonistic substances production by lactic acid bacteria isolated from the mammary gland of healthy and mastitic cows.” Vet. Microbiol.Vol. 135. 2009. DOI: https://doi.org/10.1016/j.vetmic.2008.09.078
pp. 346-357.
A. Pal, K. V. Ramana. “Isolation and preliminary characterization of a nonbacteriocin antimicrobial compound from Weissella paramesenteroides DFR-8 isolated from cucumber (Cucumis sativus).” Process Biochem. Vol. 44. 2009. pp. 499-503. DOI: https://doi.org/10.1016/j.procbio.2009.01.006
P. M. Sears, B. S. Smith, W. K. Stewart, R. N. Gonzalez, S. D. Rubino, S. A. Gusik, E.S. Kulisek, S. J. Projan, P. Blackburn. “Evaluation of a Nisin-Based Germicidal Formulation on Teat Skin of Live Cows.” J. Dairy Sci. Vol. 75. 1992. pp. 3185-3190. DOI: https://doi.org/10.3168/jds.S0022-0302(92)78083-7
J. Wu, S. Hu, L. Cao. “Therapeutic Effect of Nisin Z on Subclinical Mastitis in Lactating Cows,” Antimicrob Agents Chemother. Vol. 51. 2007. pp. 3131-3135. DOI: https://doi.org/10.1128/AAC.00629-07
J. E. Barboza-Corona, N. de la Fuente-Salcido, N. Alva-Murillo, A. Ochoa-Zarzosa, J. E. López-Meza. “Activity of bacteriocins synthesized by Bacillus thuringiensis against Staphylococcus aureus isolates associated to bovine mastitis,” Vet. Microbiol. Vol.
2009. pp. 179-183.
M. L. Varella Coelho, J. S. Nascimento, P. C. Fagundes, D. J. Madureira, S. S. Oliveira, M. A. V. P. Brito, M. C. F. Bastos. “Activity of staphylococcal bacteriocins against Staphylococcus aureus and Streptococcus agalactiae involved in bovine mastitis.” Res. Microbiol. Vol. 158. 2007. pp. 625-630. DOI: https://doi.org/10.1016/j.resmic.2007.07.002
K. M. Krause, G. R. Oetzel. “ Inducing Subacute Ruminal Acidosis in Lactating Dairy Cows.” J. Dairy Sci. Vol. 88. 2005. pp. 3633-3639. DOI: https://doi.org/10.3168/jds.S0022-0302(05)73048-4
J. C. De Man, M. Rogosa. M. E. Sharpe.“A medium for the cultivation of Lactobacilli.” J. Appl. Bacteriol. Vol. 23. 1960. pp. 130-135. DOI: https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
AOAC. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists. Washington. D.C. 1990. pp 69.
M. P. Ryan, M. C. Rea, C. Hill, R. P Ross. “An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147.” Appl. Environ. Microb. Vol. 62. 1996. pp. 612-619. DOI: https://doi.org/10.1128/aem.62.2.612-619.1996
SPSS para Windows. Version 15 Chicago: SPSS Inc. [programa informático en CD-ROM]. Disponible en SPSS Inc. Página web de SPSS disponible en:
E. W. J. van Niel, B. Hahn-Hägerdal. “Nutrient requirements of Lactococci in defined growth media.” Appl. Microbiol. Biot. Vol. 52. 1999. pp. 617-627. DOI: https://doi.org/10.1007/s002530051569
P. S. Panesar, J. F Kennedy, D. N Gandhi, K. Bunko. “Bioutilisation of whey for lactic acid production.” Food Chem. Vol. 105. 2007. pp.1-14. DOI: https://doi.org/10.1016/j.foodchem.2007.03.035
C. L. Serna, A. Rodríguez. “Producción económica de ácido láctico utilizando residuos de cosecha y jugos de caña de azúcar (Saccharum officinarum L.).” Agricultura Técnica. Vol. 67. 2007. pp. 29-38. DOI: https://doi.org/10.4067/S0365-28072007000100004
L. González, H. Sandoval, N. Sacristán, J. M. Castro, J. M. Fresno, M. E. Tornadijo. “Identification of lactic acid bacteria isolated from Genestoso cheese throughout ripening and study of their antimicrobial activity.” Food Control. Vol. 18. 2007. pp. 716-722. DOI: https://doi.org/10.1016/j.foodcont.2006.03.008
L. Topisirovic, M. Kojic, D. Fira, N. Golic, I. Strahinic, J. Lozo. “Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation.” Int. J. Food Microbiol. Vol. 112. 2006. pp. 230-235. DOI: https://doi.org/10.1016/j.ijfoodmicro.2006.04.009
A. Muñoz, S. Ananou, A. Gálvez, M. Martínez-Bueno, A. Rodríguez, M. Maqueda, E. Valdivia. “Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: Bactericidal synergism with heat.” Int. Dairy J. Vol. 17. 2007. pp. 760-769. DOI: https://doi.org/10.1016/j.idairyj.2006.09.006
N. De la Fuente-Salcido, M. G. Alanís-Guzmán, D. K. Bideshi, R. Salcedo-Hernández, M. Bautista- Justo, J. E. Barboza-Corona. “Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis.” Arch. Microbiol. Vol. 190. 2008. pp. 633-640. DOI: https://doi.org/10.1007/s00203-008-0414-2
C. Akerberg, G. Zacchi. “An economic evaluation of the fermentative production of lactic acid from wheat flour.” Bioresource Technol. Vol. 75. 2000. pp. 119-126. DOI: https://doi.org/10.1016/S0960-8524(00)00057-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.