Design and implementation of a digital electrocardiographic system

Authors

  • Cristian Vidal Silva University of Talca
  • Valeska Gatica Rojas University of Talca

DOI:

https://doi.org/10.17533/udea.redin.14718

Keywords:

ECG, DSP, electrocardiogram, QRS complex, digital filters, algorithms

Abstract

To work with bioelectrical signals of the human body is not an easy work. It is necessary to know some biological and electric aspects of the human body. This paper describes necessary knowledge and steps for designing and implementing a digital system for acquisition and processing of an electric human body signal: electrocardiographic signal (EKG). Some of the most important aspects to be considered in the implementation of a digital signal processing (DSP) system to work with human bioelectric signals are described: graphic computation, electronic circuits design with real time restrictions, human body electric signals analysis and online algorithms design). In the context of the last two indicated aspects, some algorithms for the signal filtering are described and some improvements to a classic algorithm for QRS detection of an ECG signal are shown.

|Abstract
= 469 veces | PDF (ESPAÑOL (ESPAÑA))
= 174 veces|

Downloads

Download data is not yet available.

Author Biographies

Cristian Vidal Silva, University of Talca

School of Business Informatics Engineering.

Valeska Gatica Rojas, University of Talca

School of Kinesiology.

References

N. Goldschlager, J. M. Goldman. “Principios de Electrocardiografía Clínica”. 10a ed. Ed. El Manual Moderno. México. 1992. pp. 10-90.

D. Dubin. “Electrocardiografía Práctica: Lesión Trazado e Interpretación”, 3a ed. Ed. McGraw Hill Interamericana. Madrid. 1976. pp. 35-112.

D. Cuesta. Estudio de métodos para procesamiento y agrupación de señales electrocardiográfica. Tesis Doctoral. E.P.S. de Alcoi. Universidad Politécnica de Valencia. Valencia. Septiembre 2001. pp. 17-63.

F. Kusumoto. ECG Interpretation: From Pathophysiology to Clinical Application. Ed. Springer. New York. 2009. pp. 13-19. DOI: https://doi.org/10.1007/978-0-387-88880-4

D. K. Lidner. Introducción a las Señales y los Sistemas. Ed. McGraw Hill. Caracas. 2002. pp. 291-345.

J. Proakis. Tratamiento digital de señales: Principios, algoritmos y aplicaciones. 3a ed. Ed. Prentice Hall. Madrid. 1997. pp. 300-315.

J. K. Wells, W. G. R. Crampton. “A portable bioamplifier for electric fish research: design and construction”. Neotropical Ichthyology. Vol. 4. 2006. pp. 295-299. DOI: https://doi.org/10.1590/S1679-62252006000200018

N. Thakor, J. Webster, W. J. Tompkins, “Estimation of QRS Complex Power Spectra for Design of a QRS Filter”. IEEE Transactions on Biomedical Engineering. Vol. 31. 1984. pp. 702-706. DOI: https://doi.org/10.1109/TBME.1984.325393

C. Henning, “The Principles of Software QRS Detection”. IEEE Engineering in Medicine and Biology. Vol. 21. 2002. pp. 42-57. DOI: https://doi.org/10.1109/51.993193

M. C. Rodríguez. Desarrollo de un sistema de adquisición, procesado y transmisión de electrocardiogramas (ECG). Ingeniería Técnica en Informática de Sistemas, Escuela Superior de Ciencias Experimentales y Tecnología. Universidad Rey Juan Carlos. Curso académico 2002-2003. http://dac.escet.urjc.es/PFC/cristina_rodriguez/. Consultado el 15 de diciembre 2008.

C. Vidal. Construcción de un Electrocardiógrafo Digital y Desarrollo de Algoritmos para la medición de parámetros relevantes al diagnóstico médico. Tesis de Licenciatura. Universidad Católica del Maule. Talca (Chile). 2004. pp. 16-31.

W. T. Clusin. “Mechanisms of calcium transient and action potential alternans in cardiac cells and tissues”. Am J Physiol Heart Circ Physiol. Vol 294. 2008. pp.1- 10. DOI: https://doi.org/10.1152/ajpheart.00802.2007

N. Townsend. Medical Electronics. Signal Processing & Neural Networks Group. Dept. of Engineering Science. University of Oxford. 2009. http://www.robots.ox.ac.uk/~neil/teaching/lectures/med_elec/. Consultada el 3 de marzo de 2009.

INA131 Datasheet, “Datasheet Catalog”. 2010. http://www.datasheetcatalog.com/datasheets_pdf/I/N/A/1/INA131.shtml. Consultada el 20 de enero 2010.

M. L. Ahlstrom, W. J. Tompkins. “Digital Filters for RealTime ECG Signal Processing Using Microprocessors”. IEEE Transactions on Biomedical Engineering. Vol. 32. 1985. pp. 708-713. DOI: https://doi.org/10.1109/TBME.1985.325589

G. M. Friesen, T. C. Jannett, M. A. Jadallah, S. L. Yates, S. R. Quint, H. T. Nagle. “Comparison of the Noise Sensitivity of Nine QRS Detection Algorithms”. IEEE Transactions on Biomedical Engineering. Vol. 31. 1990. pp. 85-98. DOI: https://doi.org/10.1109/10.43620

J. Pan, W. J. Tompkins. “QRS Detection Algorithm”. IEEE Transactions on Biomedical Engineering. Vol. 32. 1985. pp. 230-236. DOI: https://doi.org/10.1109/TBME.1985.325532

S. Suppappola, Y. Sun. “Nonlinear Transform of ECG Signals for Digital QRS Detection: A Quantitative Analysis”. IEEE Transactions on Biomedical Engineering. Vol. 41. 1994. pp. 397-400. DOI: https://doi.org/10.1109/10.284971

P. Hamilton, W. J. Tompkins. “Quantitative Investigation of QRS Detection Rules Using MIT/ BIH Arrhythmia Database”. IEEE Transactions on Biomedical Engineering. Vol. 31. 1986. pp. 1157- 1165. DOI: https://doi.org/10.1109/TBME.1986.325695

C. Vidal, P. Charnay, P. Arce. Enhancement of a QRS detection algorithm based on the first derivative, using techniques of a QRS detector algorithm based on non-linear transformations. Ed. Springer. Berlin. 2009. pp. 393-396. DOI: https://doi.org/10.1007/978-3-540-89208-3_93

MIT DB, “MIT BIH DB”. http://physionet.incorp.usp.br/physiobank/database/mitdb/. 2008. Consultada el 15 de enero de 2008.

Published

2013-03-01

How to Cite

Vidal Silva, C., & Gatica Rojas, V. (2013). Design and implementation of a digital electrocardiographic system. Revista Facultad De Ingeniería Universidad De Antioquia, (55), 99–107. https://doi.org/10.17533/udea.redin.14718