Transport behavior of sterilization of canned liquid-food
DOI:
https://doi.org/10.17533/udea.redin.14934Keywords:
Navier-Stokes, food sterilization, slowest heating zone (SHZ)Abstract
A perspective on the evolution of liquid-food thermal sterilization and the importance of mathematical modeling and the role of computational numerical analysis in the estimation of equivalent sterilization time is presented in this work.
Downloads
References
M. Farid, A. G. Ghani. “A new computational technique for the estimation of sterilization time in canned food”. Chemical engineering and processing. Vol. 43. 2004. pp. 523-531. DOI: https://doi.org/10.1016/j.cep.2003.08.007
I. Dincer. “Heat transfer during heat sterilization and cooling processes of canned products”. International Communications of Heat and Mass Transfer. Vol. 34. 1998. pp. 101-105. DOI: https://doi.org/10.1007/s002310050236
A. G. Ghani. “A computer simulation of heating and cooling liquid food during sterilization process using computational fluid dynamics”. Association for Computing Machinery New Zealand Bulletin. Vol. 2. 2006. pp. 1-14.
National Canners Association. Research Laboratories. “Laboratory Manual for Food Canners and Processors”. Microbiology and Processing. 3rd ed. The AVI Publishing Company. Inc. Westport, Connecticut. Vol. 1. 1979. pp. 1-336.
H. Jiménez Islas, L. M. González Calderón, J. E. Botello Álvarez, J. L. Navarrete Bolaños. “Estudio Numérico de La Esterilización Térmica de Alimentos Líquidos Enlatados que Contienen Partículas, Empleando el Enfoque de Medio Poroso”. Revista Mexicana de Ingeniería Química. Vol. 4. 2005. pp. 1- 23.
M. N. Varma. A. Kannan. “CFD studies on natural convective heating of canned food in conical and cylindrical containers”. Journal of Food Engineering. Vol. 77. 2006. pp. 1024-1036. DOI: https://doi.org/10.1016/j.jfoodeng.2005.07.035
C. S. Lucatero. Estudio numérico de la transferencia de calor en la esterilización de alimentos. Tesis de Licenciatura. Instituto Tecnológico de Celaya. Celaya Gto, 2000. pp. 1-103.
T. Norton, D. W. Sun. “Computational fluid dynamics (CFD) - an effective and efficient design and analysis tool for the food industry: A review”. Trends in Food Science & Technology. Vol. 17. 2006. pp. 600-620. DOI: https://doi.org/10.1016/j.tifs.2006.05.004
J. Welti-Chanes, F. Vergara-Balderas, D. Bermudez-Aguirre. “Transport phenomena in food engineering: basic concepts and advances”. Journal of Food Engineering. Vol. 67. 2005. pp. 113-128. DOI: https://doi.org/10.1016/j.jfoodeng.2004.05.053
D. R. Heldman, D. B. Lund. Handbook of Food Engineering. Marcel Dekker Inc. New York. 1992. pp. 1- 756.
P. Valle Vega, R.L. Merson. “Cálculo del tiempo de tratamiento térmico en botes, Método General y Gráfico”. Tecnología de Alimentos Vol. XVI. 1981. pp. 10-22.
E. A. Mulley, C. R. Stumbo, W. M. Hunting. “Thiamine-chemical index of sterilization efficacy of thermal processing”. Journal of Food Science. Vol. 40. 1975. pp. 993-996. DOI: https://doi.org/10.1111/j.1365-2621.1975.tb02251.x
D. B. Lund. “Maximizing nutrient retention”. Food Technology. Vol. 31. 1977. pp. 71-78.
P. J. Fellows. Food Processing Technology. 2nd ed. Woodhead Publishing Limited. Cambridge. U. K. 2000. pp. 1-608.
N. N. Potter. Food Science. 4th ed. Ed. Van Nostrand Reinhold, New York. 1986. pp. 169-201.
A. Jung, P. J. Fryer. “Optimising the Quality of Safe Food: Computational Modelling of Continuous Sterilisation Process”. Chemical Engineering Science. Vol. 54. 1999. pp. 717-730. DOI: https://doi.org/10.1016/S0009-2509(98)00278-4
J. L. Heid, M. A. Joslyn. Food Processing Operations: Their Management, Machines, Materials and Methods 2. AVI Publishing Company Inc.Westport. Connecticut. 1963. pp. 1-644.
J. A. G. Rees, J. Bettison. “Procesado Térmico y Envasado de los Alimentos”. Ed. Acribia. Zaragoza. España. 1991. pp. 1-304.
T. Mongkhonsi, H. F. López Isunza, L. S. Kershenbaum. “The distortion of measured temperature profiles in fixed bed reactors”. Chemical Engineering Research and Design. Vol. 70a. 1992. pp. 255-264.
Z. Zhang. “The effect of thermocouple and receptacle type on observed heating characteristics of conduction-heating foods packaged in small metal containers”. Journal of Food Process Engineering. Vol. 25. 2002. pp. 323-335. DOI: https://doi.org/10.1111/j.1745-4530.2002.tb00569.x
F. Marra, V. Romano. “A mathematical model to study the influence of wireless temperature sensor during assessment of canned food sterilization”. Journal of Food Engineering. Vol. 59. 2003. pp. 245-252. DOI: https://doi.org/10.1016/S0260-8774(02)00464-8
W. C. Bigelow, G. S. Bohart, A. C. Richardson, C. O. Ball. “Heat penetration in processing canned foods”. National Canners Association. Bull I6L. 1920. pp. 1-128.
C. O. Ball. “Thermal Process time for canned food”. Bull. Natl. Res. Council. Vol. 7. 1023. pp. 9-76.
J. Welti Chanes, O. Gómez Palomares, F. Vergara Balderas, S. Maris Alzamora. “Aplicaciones de Ingeniería y Fenómenos de Transporte al Estudio de la Transferencia Convectiva de Calor en Alimentos Envasados”. Revista Mexicana de Ingeniería Química. Vol. 4. 2005. pp. 89-106.
A. Kannan, P. C. G. Sandaka. “Heat transfer analysis of canned food sterilization in a still retort”. Journal of Food Engineering. Vol. 88. 2008. pp. 213-228. DOI: https://doi.org/10.1016/j.jfoodeng.2008.02.007
R. B. Bird, R. C. Armstrong, O. Hassager. Dynamics of Polymeric Fluids. Volume 1. Fluid Mechanics. John Wiley & Sons Inc. New York. 1977. pp. 1-450.
J. F. Steffe. Rheological Methods in Food Process Engineering. 2nd ed. Freeman Press. East Lansing.(MI). 1996. pp. 1-428.
I. O. Mohamed. “Determination of an effective heat transfer coefficients for can headspace during thermal sterilization process”. Journal of Food Engineering. Vol. 79. 2007. pp. 1166-1171. DOI: https://doi.org/10.1016/j.jfoodeng.2006.04.015
A. Kumar, M. Bhattacharya, J. Blaylock. “Numerical simulation of natural convection heating of canned thick viscous liquid food products”. Journal of Food Science. Vol. 55. 1990. pp. 1403-1411. DOI: https://doi.org/10.1111/j.1365-2621.1990.tb03946.x
R. B. Bird, W. E. Stewart, E. N. Lightfoot. Transport Phenomena. 2nd ed. John Wiley & Sons Inc. New York. 2002. pp. 1-912.
S. V. Patankar, D. B. Spalding. “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”. Int. J. Heat Mass Transfer. Vol. 15. 1972. pp. 1787-1806. DOI: https://doi.org/10.1016/0017-9310(72)90054-3
H. Jiménez Islas. Modelamiento Matemático de la Transferencia de Momentum, Calor y Masa en Medios Porosos. Tesis Doctoral. Universidad Autónoma Metropolitana, México D.F. 1999. pp. 1-376.
B. Gebhart, Y. Jaluria, R. L. Mahajan, B. Sammakia. Journal of Buoyancy-Induced Flows and Transport. Hemisphere Publishing Co. New York. 1988. pp. 1-1001.
P. J. Roache. Computational Fluid Dynamics. Hermosa Publishers, Albuquerque, NM. 1972. pp. 1-446.
A. K. Wong, J. A. Reizes. “An Effective Vorticity-Vector Potential Formulation for the Numerical Solution of Three-Dimensional Duct Flow Problems”. J. of Computational Physics. Vol. 55. 1984. pp. 98-114. DOI: https://doi.org/10.1016/0021-9991(84)90017-2
A. K. Wong, J. A. Reizes. “The Vector Potential in the Numerical Solution of Three-Dimensional Fluid Dynamics Problems in Multiply Connected Regions”. J. of Computational Physics. Vol. 62. 1986. pp. 124-142. DOI: https://doi.org/10.1016/0021-9991(86)90103-8
D. A. Nield, A. Bejan. Convection In Porous Media. Springer-Verlag. New York. 1992. pp. 1-408. DOI: https://doi.org/10.1007/978-1-4757-2175-1_1
H. Jiménez Islas, J. L. Navarrete Bolaños, E. Botello Álvarez. “Estudio Numérico de la Convección Natural de Calor y Masa 2-D en Granos Almacenados en Silos Cilíndricos”. Agrociencia.Vol. 38. 2004. pp. 325-342.
A. G. Ghani, M. M. Farid, X. D. Chen, P. Richards. “Numerical simulation of natural convection heating of canned food by computational fluid dynamics”. Journal of Food Engineering. Vol. 41. 1999. pp. 55-64. DOI: https://doi.org/10.1016/S0260-8774(99)00073-4
W. H. Yang, M. A. Rao. “Transient natural convection heat transfer to starch dispersion in a cylindrical container: Numerical solution and experiment”. Journal of Food Engineering, Vol. 36. 1998. pp. 395-415. DOI: https://doi.org/10.1016/S0260-8774(98)00069-7
A. K. Datta, A. A. Teixeira. “Numerical modeling of natural convection heating in canned liquids foods”. Transactions of the American Society of Agricultural Engineers. 1987. Vol. 30. pp. 1552-1561. DOI: https://doi.org/10.13031/2013.30600
A. K. Datta, A. A. Teixeira. “Numerically predicted transient temperature and velocity profiles during natural convection heating of canned liquid foods”. J. of Food Science. Vol. 53. 1988. pp. 191-195. DOI: https://doi.org/10.1111/j.1365-2621.1988.tb10206.x
A. Kumar, M. Bhattacharya. “Transient temperature and velocity profiles in a canned non-newtonian liquid food during sterilization in a still-cook retort”. International Journal of Heat and Mass Transfer. Vol. 34. 1991. pp. 1083-1096. DOI: https://doi.org/10.1016/0017-9310(91)90018-A
A. G. Ghani, M. F. Mohammed, X. D. Chen. “A CFD simulation of the coldest point during sterilization of canned food”. The 26th Australian Chemical Engineering Conference. 28-30 September 1998. Port Douglas. Queensland. Paper 358 on CD-ROM (ISBN 1 85825 6835).
A. G Ghani, M. M. Farid, X. D Chen, P. Richards. “An investigation of deactivation of bacteria in canned liquid food during sterilization using computational fluid dynamics”. (CFD) Journal of Food Engineering. Vol. 42. 1999. pp. 207-214. DOI: https://doi.org/10.1016/S0260-8774(99)00123-5
S. Siriwattanayotin, T. Yoovidhya, T. Meepadung, W. Ruenglertpanyakul. “Simulation of sterilization of canned liquid food using sucrose degradation as an indicator”. Journal of Food Engineering. Vol. 73. 2006. pp. 307-312. DOI: https://doi.org/10.1016/j.jfoodeng.2004.08.008
A. G. Ghani, M. M. Farid, X. D. Chen. “Numerical simulation of transient temperature and velocity profiles in a horizontal can during sterilization using computational fluid dynamics”. Journal of Food Engineering. Vol. 51. 2002. pp. 77-83. DOI: https://doi.org/10.1016/S0260-8774(01)00039-5
M. N. Varma, A. Kannan. “Enhanced food sterilization through inclination of the container walls and geometry modifications”. International journal of heat and mass transfer. Vol. 48. 2005. pp. 3753-3762. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.03.024
Y. Choi, M. Okos. “Effects of temperature and composition on thermal properties of foods. Food engineering and process applications. Vol. 1”. Maguer, P. Jelens (Eds). Transport Phenomenon. L. Elsevier. New York. 1986. pp. 93-101.
J. M. Alvarado Orozco, J. L. Navarrete Bolaños, J. E. Botello Álvarez, G. M. Martínez, H. Jiménez Islas. “Efecto de la viscosidad sobre la convección natural 2-D en cavidades cilíndricas, durante la esterilización de alimentos líquidos”. Memorias del XXIX Encuentro Nacional de la AMIDIQ. Puerto Vallarta. Jalisco. 2008. Vol 4. pp. 162-172.
L. J. Wang, D. W. Sun. “Recent developments in numerical modelling of heating and cooling processes in the food industry - a review”. Trends in Food Science & Technology. Vol. 14. 2003. pp. 408-423. DOI: https://doi.org/10.1016/S0924-2244(03)00151-1
X. D. Chen, H. J. Huang, A. G. Ghani. “Thermal sterilization of liquid foods in sealed container-developing simple correlations to account for natural convection”. International Journal of Food Engineering. Vol. 1. 2005. pp. 1-23. DOI: https://doi.org/10.2202/1556-3758.1006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.