Design and implementation of an Inverse Neural Network Controller applied To VSC Converter for active and reactive Power Flow, based on regions of work

Authors

  • José Guillermo Guarnizo Marin University Francisco Jose de Caldas
  • Nelson Díaz Aldana University Francisco Jose de Caldas
  • César Trujillo Rodríguez University Francisco Jose de Caldas

DOI:

https://doi.org/10.17533/udea.redin.15045

Keywords:

neural network, inverse neural control, Voltage Source Converter

Abstract

Voltage Source Converter (VSC) usually used in High Voltage Direct Current (HVDC) systems, where a VSC can be used as inverter or rectifier. VSC systems allow the independent control of active or reactive power flow using different techniques. VSC systems present nonlinear behaviors, multiple inputs and multiple outputs, therefore nonlinear controllers can be used to obtain an adequate behavior. Inverse Neural Control is an alternative of an intelligent control since a mathematical model of the system is not required for designing controllers. Additionally, Inverse Neural Control can easily manage uncertainties and nonlinear behaviors typically presented in VSC systems. In this paper are presented the design, simulation and implementation of an Inverse Neural Control applied to the control of active and reactive power flow in a VSC system. Initially, is presented the simulation of the controller, where is evaluated the behavior of the system using a MIMO controller for the control of two parameters in the same time. Subsequently, the implementation of the controller is done and the e obtained is presented.

Finally, a modular Inverse Neural Network Control is proposed to overcome the drawbacks presented in the behavior of the system when it was controlled in real implementation.

|Abstract
= 166 veces | PDF (ESPAÑOL (ESPAÑA))
= 72 veces|

Downloads

Download data is not yet available.

Author Biographies

José Guillermo Guarnizo Marin, University Francisco Jose de Caldas

Researcher at the Alternative Energy Sources Research Laboratory, Faculty of Engineering.

Nelson Díaz Aldana, University Francisco Jose de Caldas

Professor. Researcher at the Alternative Energy Sources Research Laboratory, Faculty of Engineering.

César Trujillo Rodríguez, University Francisco Jose de Caldas

Researcher at the Alternative Energy Sources Research Laboratory, Faculty of Engineering.

References

J. Beerten, R. Belmans. “Modeling and Control of Multi-Terminal VSC HVDC Systems”. Energy Procedia. Vol. 24. 2012. pp. 123-130. DOI: https://doi.org/10.1016/j.egypro.2012.06.093

C. Trujillo, D. Velasco, J. Guarnizo, N. Díaz. “Design and implementation of a VSC for interconnection with power grids, using the method of identification the system through state space for the calculation of controllers”. Applied Energy. Vol. 9. 2011. pp. 3169-3175. DOI: https://doi.org/10.1016/j.apenergy.2011.02.038

B. Parkhideh, S. Bhattacharya. “Vector-Controlled Voltage-Source-Converter-Based Transmission Under Grid Disturbances”. IEEE Transactions on Power Electronics. Vol. 28. 2013. pp. 661-672. DOI: https://doi.org/10.1109/TPEL.2012.2204071

A. Leon, J. Mauricio, J. Solsona, A. Gómez. “Adaptive Control Strategy for VSC-Based Systems Under Unbalanced Network Conditions”. IEEE Transactions on Smart Grid. Vol. 1. 2010. pp. 311-319. DOI: https://doi.org/10.1109/TSG.2010.2076840

N. Díaz, C. Trujillo, J. Guarnizo. “Active and reactive power flow regulation for a grid connected vsc based on fuzzy controllers”. Revista de la Facultad de Ingeniería Universidad de Antioquia. N.° 66. 2013. pp. 118-130. DOI: https://doi.org/10.17533/udea.redin.15229

H. Latorre, M. Ghandhari, L. Söder. “Active and reactive power control of a VSC-HVdc”. Electric Power Systems Research. Vol. 78. 2008. pp. 1756-1763. DOI: https://doi.org/10.1016/j.epsr.2008.03.003

E. Acha, B. Kazemtabrizi, L. Castro. “A New VSC-HVDC Model for Power Flows Using the Newton-Raphson Method”. IEEE Transactions on Power Systems. Vol. 28. 2013. pp. 2602-2612. DOI: https://doi.org/10.1109/TPWRS.2012.2236109

N. Sadegh. “A perceptron network for functional identification and control of nonlinear systems”. IEEE Transactions on Neural Networks. Vol. 4. 1993. pp. 982- 988. DOI: https://doi.org/10.1109/72.286893

M. Norgaard, O. Ravn, N. Poulsen. “NNSYSID and NNCTRL tools for system identification and control with neural networks”. Computing & Control Engineering Journal. Vol. 12. 2001. pp. 29-36. DOI: https://doi.org/10.1049/cce:20010105

M. Kalantar, S. Mousavi. “Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage”. Applied Energy. Vol. 87. 2010. pp. 3051-3064. DOI: https://doi.org/10.1016/j.apenergy.2010.02.019

E. Mamarelis, C. Ramos, G. Petrone, G. Spagnuolo, M. Vitelli, R. Giral. “Reducing the hardware requirements in FPGA based controllers: a photovoltaic application,” Revista Facultad de Ingeniería Universidad de Antioquia. N.° 68. 2013. pp. 75-87. DOI: https://doi.org/10.17533/udea.redin.17162

A. Morahana, P. Dash. “Input-Output Linearization and Robust Sliding-Mode Controller for the VSC-HVDC Transmission Link”. IEEE Transactions on Power Delivery. Vol. 25. 2010. pp. 1952-1961. DOI: https://doi.org/10.1109/TPWRD.2010.2042469

L. Haifeng, L. Gengyin, L. Guangkai, L. Peng, Y. Ming. Analysis and Design of Hinf Controller in VSC HVDC Systems. Proceedings of the Asia and pacific IEEE/PES. 2005. pp. 1-6.

J. Guarnizo, C. Trujillo, J. Lopez, J. Soriano. “Identificación de Reductores de Tensión Conmutados con Realimentación de Variables de Estado utilizando Redes Neuronales”. Ingenium. Vol. 20. 2009 pp. 46-53.

L. Aguirre, M. Correa, C. Cassini. “Nonlinearities in NARX polynomial models: representation and estimation”. Control Theory and Applications, IEE Proceedings. Vol. 149. 2002. pp. 343-348. DOI: https://doi.org/10.1049/ip-cta:20020398

M. Norgaard, O. Ravn, N. Poulsen, L. Hansen. Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook. 3rd ed. Ed. Springer. London, Great Britain. 2003. pp. 126.

S. Haykin. Neural Networks: A Comprehensive Foundation. 2nd ed. Ed. Prentice Hall International. Hamilton, Canadá. 1999. pp. 183-198.

F. Forero, A. Molina, J. Guarnizo. Design of a Controller Inverse neural Applied to a Converter VSC for the Control of the Active and Reactive Power Flow. Proceedings of the (INTERCON) XIV Congreso Internacional de Ingenierías Eléctrica, Electrónica y Sistemas. Trujillo, Peru. 2008. pp. 213-221.

A. Molina, F. Forero, J. Guarnizo, H. Chamorro. Implementation of Inverse Neural Control To VSC Converter for Active and Reactive Power Flow. Proceedings of the ISAP ‘09. 15th International Conference Intelligent System Applications to Power Systems. Curitiba, Brazil. 2009. pp. 1-6. DOI: https://doi.org/10.1109/ISAP.2009.5352931

Published

2014-08-05

How to Cite

Guarnizo Marin, J. G., Díaz Aldana, N. ., & Trujillo Rodríguez, C. (2014). Design and implementation of an Inverse Neural Network Controller applied To VSC Converter for active and reactive Power Flow, based on regions of work. Revista Facultad De Ingeniería Universidad De Antioquia, (72), 20–34. https://doi.org/10.17533/udea.redin.15045