K-statistical operators for set mathematical morphology
DOI:
https://doi.org/10.17533/udea.redin.16532Keywords:
Mathematical morphology, dilatation, erosion, opening, closingAbstract
A generalization of the basic operators in mathematical morphology is presented in this paper. The resulting generalization lead to the construction of the k-statistical operators, due to its ability to obtain geometricaly the statistical descriptors within the range of the operator (Z={0,1}). These operators can be less strict as to the expected result as in the basic operators of dilation and erosion. Furthermore, a single k-statistical operator represents a functional complete set that includes erosion and dilation as particular cases. In a k-statistical operator, the condition to obtain the resulting set depends on whether the area (number of elements) of intersection between the translated structural set and the original set is at least equal to k. As a consecuence, a single parameter (k) is able to create a manifold of operators ranging from erosion to dilation. Hence, other kinds of openings and closings with new behavior are created as alternative solutions to binary image processing problems.
Downloads
References
J. L. Díaz de León, C. Yañez. Introducción a la morfología matemática de conjuntos. Instituto Politécnico Nacional, Universidad Nacional Autónoma de México. Fondo de cultura económica. 2003. pp. 191-199
J. Serra. Image analysis and mathematical morphology. Vol. 1. Academic Press. New York. 1982. pp. 1-100.
A. Gamino Operaciones morfológicas rápidas por descomposición del elemento de estructura mediante discos”. Tesis de maestría. CINVESTAV-IPN.2002. pp. 1-6.41-52.
H. Minkowski. “Volumen and Oberfläche”. Math. Ann. Vol. 57. 1903. pp. 447-495. DOI: https://doi.org/10.1007/BF01445180
H. Hadwiger. Vorslesunger über Inhalt, Oberfläche und Isoperimetrie. Ed. Springer. Berlín. 1957. pp. 401-441. DOI: https://doi.org/10.1007/978-3-642-94702-5
J. L. Díaz de León. Algoritmos de esqueletización de imágenes digitales binarias. Tesis de maestría. CINVESTAV-IPN. 1993. pp. 1-15.
J. L. Díaz de León. Morfología matemática basada en espacios métricos de combinación lineal. Tesis de doctorado. CINVESTAV-IPN. 1996. pp. 1-21.
J. L. Díaz de León, H. Sossa. “Mathematical morphology on linear combined metric spaces on Z2: Part I”. Journal of mathematical imaging and vision. Vol. 12. 2000. pp. 137-154. DOI: https://doi.org/10.1023/A:1008314406260
J. L. Díaz de León, H. Sossa. “Mathematical morphology on linear combined metric spaces on Z2: Part II”. Journal of mathematical imaging and vision. Vol. 12. 2000. pp. 155-168. DOI: https://doi.org/10.1023/A:1008366423098
O. Cuisenaire, B. Macq. “Fast euclidean morphological operator using local distance transformation by propagation”. IPA 99-7th conference on image processing and its applications. Manchester. U.K. 1999. pp. 856-860. DOI: https://doi.org/10.1049/cp:19990446
M. V. Droogenbroeck. “Algorithms for openings of binary and label images with rectangular structuring elements”. Mathematical Morphology. H. Talbot, R. Beare (editors). Ed. Csiro publishing. Sidney. Australia. 2002. pp. 197-207.
M. V. Droogenbroeck, H. Talbot. “Fast computation of morphological operatorations with arbitrary structuring elements”. Pattern recognition letters. Vol. 17. 1996. pp. 1451-1460. DOI: https://doi.org/10.1016/S0167-8655(96)00113-4
I. Ragnelmam. “Fast erosion and dilatation by contour processing and thresholding of distance maps”. Pattern recognition letters. Vol. 13. 1992. pp. 161-166. DOI: https://doi.org/10.1016/0167-8655(92)90055-5
J. L. Van Vliet, B. J. Verwer. “A contour processing method for fast binary neighborhood operations”. Pattern recognition letters. Vol 7. 198. pp. 27-36. DOI: https://doi.org/10.1016/0167-8655(88)90041-4
L. Vincent. “Morphological transformations of binary images with arbitrary structuring elements”. Signal processing. Vol. 22. 1991. pp. 3-23. DOI: https://doi.org/10.1016/0165-1684(91)90025-E
G. Matheron. Random sets and integral geometry. Wiley. New York. 1975. pp. 844-847. DOI: https://doi.org/10.1090/S0002-9904-1975-13853-5
J. Ángulo. “Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, in enhancement and analysis”. Computer Vision & Image Understanding. Vol. 107. 2007. pp. 56-73. DOI: https://doi.org/10.1016/j.cviu.2006.11.008
H. Talbot, B. Appleton. “Efficient complete and incomplete path openenings and closings”. Image & Vision Computing. Vol. 25. April 2007. pp. 416-425. DOI: https://doi.org/10.1016/j.imavis.2006.07.021
Downloads
Published
How to Cite
Issue
Section
License
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.