Nonlinear analysis of the electroencephalogram in depth of anesthesia

Authors

DOI:

https://doi.org/10.17533/udea.redin.n75a06

Keywords:

EEG features extraction, nonlinear complexity analyses, digital signal processing, depth of anesthesia monitoring

Abstract

Digital signal processing of the electroencephalogram (EEG) became important in monitoring depth of anesthesia (DoA) being used to provide a better anesthetic technique. The objective of this work was to conduct a review about nonlinear mathematical methods applied recently to the analyses of nonlinear non-stationary EEG signal. A review was conducted showing time- and frequency-domain nonlinear mathematical methods recently applied to EEG analysis: Approximate Entropy, Sample Entropy, Spectral Entropy, Permutation Entropy, Wavelet Transform, Wavelet Entropy, Bispectrum, Bicoherence and Hilbert Huang Transform. Some algorithms were implemented and tested in one EEG signal record from a patient at The Sabana University Clinic. Recently published results from different methods are discussed. Nonlinear techniques such as entropy analysis in time domain and combination with wavelet transform, and Hilbert Huang transform in frequency domain have shown promising results in classifications of depth of anesthesia stages.

|Abstract
= 941 veces | PDF
= 232 veces|

Downloads

Download data is not yet available.

Author Biographies

Oscar Leonardo Mosquera-Dusan, Savannah College

Electronic Engineer, Esp. Bioengineering, Doctoral Student in Biosciences. Professor Chair - Faculty of Engineering. PROSEIM Research Group.

Daniel Alfonso Botero-Rosas, Savannah College

Research professor, Faculty of Medicine - Associate Professor. Director of the PROSEIM research group.

Mauricio Cagy, Federal University of Rio de Janeiro

Teaching researcher. Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE).

Ruben Dario Henao-Idarraga, Clinic University of La Sabana

Integrated Chief Surgical Department. Professor - Anesthesiology, Faculty of Medicine, Department of Anesthesia.

References

American Society of Anesthesiologists. “Practice Advisory for Intraoperative Awareness and Brain Function Monitoring”. Anesthesiology. Vol. 104. 2006. pp. 847-864.

J. Osterman, J. Hopper, W. Heran, T. Keane, B. Kolk. “Awareness under anesthesia and the development of posttraumatic stress disorder”. General Hospital Psychiatry. Vol. 23. 2001. pp. 198-204.

P. Bischoff, I. Rundshagen. “Awareness during general anesthesia”. Deutsches Ärzteblatt International. Vol. 108. 2011. pp. 1-7.

R. Nickalls, R. Mahajan. “Editorial, Awareness and anaesthesia: think dose, think data”. British Journal of Anaesthesia. Vol. 104. 2010. pp. 1-2.

A. Anier, T. Lipping, V. Jäntti, P. Puumala, A. Huatori. Entropy of the EEG in transition to burst suppression in deep anesthesia: surrogate analysis. Proceedings of the 32nd Annual International Conference of the IEEE EMBS. Buenos Aires, Argentina. 2010. pp. 2790- 2794.

N. Zhengqiang, L. Wang, J. Meng, F. Qiu, J. Huang. “EEG signal processing in anesthesia: Feature extraction of time and frecuency parameters”. Procedia Environmental Sciences. Vol. 8. 2011. pp. 215-220.

W. Dong, C. Gui, Y. Ying, L. Lin, L. Guang, S. Wei. “Application of nonlinear dynamics analysis in assesing unconsciousness: A preliminary study”. Clinical Neurophysiology. Vol. 122. 2011. pp. 490- 498.

N. Nicolaou, P. Houris, P. Alexandrou, J. Georgiou. Entropy Measures for Discrimination of ‘awake’ Vs ‘anaesthetized’ State in Recovery from General Anesthesia. Proceedings of the 33rd Annual International Conference of the IEEE EMBS. Boston, USA. 2011. pp. 2598-2602.

L. Wang, N. Zhengqiang, J. Meng, F. Qiu, J. Huang. “EEG under anesthesia: A general method for calculation of depth of anesthesia”. Procedia Environmental Sciences. Vol. 8. 2011. pp. 209-214.

P. Stacey, Z. Eugene, M. Zheng, M. Paul, B. Ian, B. David. “Peak and averaged bicoherence for different EEG patterns during general anaesthesia”. Biomed Central - BioMedical Engineering. Vol. 9. 2010. pp. 76-97.

K. Hayashi, T. Sawa, M. Matsuura “Anesthesia Depth-dependent Features of Electroencephalographic Bicoherence Spectrum during Sevoflurane Anesthesia”. Anesthesiology. Vol. 108. 2008. pp. 841- 850.

Z. Toktam, B. Reza, D. Mahmood. “A waveletbased estimating depth of anesthesia”. Engineering Applications of Artificial Intelligence. Vol. 25. 2012. pp. 1710-1722.

T. Nguyen, P. Wen, Y. Li, R. Gray. “Measuring and reflecting depth of anesthesia using wavelet and power spectral density”. IEEE Transaction on information technology in biomedicine. Vol. 15. 2011. pp. 630-639.

T. Nguyen, P. Wen, Y. Li, M. Malan. “Measuring the hypnotic depth of anaesthesia based on the EEG signal using combined wavelet transform, eigenvector and normalisation techniques”. Computers in biology and medicine. Vol. 42. 2012. 680-691.

B. Singh, A. Tiwari. “Optimal selection of wavelet basis function applied to ECG signal denoising”. Digital Signal Processing. Vol. 16. 2006. 275-287.

N. Huang, Z. Wu, S. Long. “Hilbert Huang Transform”. Scholarpedia. Vol. 3. 2008. pp. 2544.

X. Li, D. Li, Z. Liang, L. Voss, J. Sleigh. “Analysis of depth of anesthesia with Hilbert–Huang spectral entropy”. Clinical Neurophysiology. Vol. 119. 2008. pp. 2465-2475.

P. Steven, H. Wei. “Approximate entropy: Statistical properties and applications”. Communications in Statistics - Theory and Methods. Vol. 21. 1992. pp. 3061-3077.

H. Viertiö, V. Maja, M. Särkelä, P. Talja, N. Tenkanen, H. Laakso. “Description of the EntropyTM algorithm as applied in the Datex-Ohmeda S/5TM Entropy Module”. Acta Anaesthesiologica Scandinavica. Vol. 48. 2004. pp. 154-161.

B. Christopher, P. Bernd. “Permutation entropy - a natural complexity measure for time series”. Procedia Environmental Sciences. Vol. 88. 2002. pp. 4102-4106.

E. Olofsen, J. Sleigh, A. Dahan. “Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect”. British Journal of Anaesthesia. Vol. 101. 2013. pp. 810-821.

S. Mallat. “A theory for multiresolution signal decomposition: the wavelet representation. Pattern analysis and Machine Inteligence”. IEEE transaction on. Vol. 11. 1989. pp. 674-693.

I. Rampil. “A primer for EEG signal processing in anesthesia”. Anesthesiology. Vol. 89. 1998. pp. 980- 1002.

R. Rodrigues, I. Miranda, J. García, S. Benevides, Y. Barbosa, D. Abitbol. “Bispectral index and other processed parameters of electroencephalogram: an Update”. Revista Brasileira de Anestesiologia. Vol. 62. 2012. pp. 105-117.

C. Chisholm, J. Zurica, D. Mironov, E. Ornstein, E. Heyer. “Comparison of Electrophysiologic Monitors with Clinical Assessment of Level of Sedation”. Mayo Clinic Proceedings. Vol. 81. 2006. 46-52.

Downloads

Published

2015-05-17

How to Cite

Mosquera-Dusan, O. L., Botero-Rosas, D. A., Cagy, M., & Henao-Idarraga, R. D. (2015). Nonlinear analysis of the electroencephalogram in depth of anesthesia. Revista Facultad De Ingeniería Universidad De Antioquia, (75), 45–56. https://doi.org/10.17533/udea.redin.n75a06