A nonlinear finite element model of lightweight walls with cold formed steel members under lateral load
DOI:
https://doi.org/10.17533/udea.redin.18145Keywords:
cold formed steel framing, finite element, model updating, lateral load, shear wall panelsAbstract
This article presents the results of an investigation aimed at generating finite element models (FEM) for studying lateral load behavior of lightweight walls composed of a typical steel framing and different coating materials. Initially, the elements and connections were characterized with standard tests, based on this information and research by [1] finite element models were built that included the nonlinear behavior of the connections between elements. This model was updated for different coating materials using experimental results of lateral loads test conduced on full-scale prototypes for five different coating configurations. However large differences were found when compared the model updating parameters with initial parameters on the FEM model. These differences are attributed to the dissimilar materials working together as a composite rather than as individually. The model was validated with a configuration combining coating materials producing results with a 6.9% difference with respect to experimental data. This indicates an acceptable predictability of the model for other coating materials.
Downloads
References
S. Andreasson, M. Yasumura. L. Daudeville. Sensitivity Study of the Finite Element Model for Wood-Framed Shear Walls”. Journal of Wood Science. Vol. 48. No 3. 2002. pp 171-178. DOI: https://doi.org/10.1007/BF00771363
L. Xu, J. Martínez. "Strength and stiffness determination of shear wall panels in cold-formed steel framing". Thin-Walled Structures. Vol. 44. 2006. pp. 1084-1095. DOI: https://doi.org/10.1016/j.tws.2006.10.002
IRC2009. International Residential Code For one- and two-family Dwellings. Ed. International Code Council. Inc. 1th ed. 2009. Washington, D.C. USA. pp. 868
AISI. North American standard for cold-formed steel framing-lateral design. S213. Ed. American Iron and Steel Institute. Washington, USA. 2007. pp.73.
J.K, Sinha, A. Rama, R.K, Sinha. Advantage of the Updated Model of Structure: A Case Study. Nuclear Engineering and Design. Vol. 232. 2004. pp 1-6. DOI: https://doi.org/10.1016/j.nucengdes.2004.03.010
L. Fiorino, G. Dellacorte, R. Landolfo. “Experimental tests on typical screw connections for cold-formed steel housing”. Engineering Structures. Vol. 29. 2007. pp. 1761-1773. DOI: https://doi.org/10.1016/j.engstruct.2006.09.006
B. Xia, J. Dong. "Finite Element Analysis of the Lateral Force Resistance of Light Gauge Steel Framed Compound Bearing Walls". Building Structure Supplement. No. 8. 2004. pp. 334-337.
S. Pei, J. Van de Lindt. "Seismic numerical modeling of a six-story light-frame wood building: Comparison with experiments". Journal of Earthquake Engineering. Vol. 15. 2011. pp. 924-941. DOI: https://doi.org/10.1080/13632469.2010.544840
I. Christovasilis, A. Filiatrault. A two-dimensional numerical model for the seismic collapse assessment of light-frame wood structures. ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Rhodes, Greece. 2009. pp. 24 DOI: https://doi.org/10.1061/41130(369)76
L. Fülöp, D. Dubina. "Performance of wall-stud coldformed shear panels under monotonic and cyclic loading Part II: Numerical modeling and performance analysis. Thin-Walled Structures". Vol. 42. 2004. pp. 339-349. DOI: https://doi.org/10.1016/S0263-8231(03)00064-8
A. Blasetti, R. Hoffman, D. Dinehart. "Simplified hysteretic finite element model for wood and viscoelastic polymer connections for the dynamic analysis of shear walls". Journal of Structural Engineering. Vol. 134. No. 1, 2008, pp. 77-86. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(77)
J. Humbert, J. Baroth. Predictive models for panelsheathed shear walls under seismic loadings. Wood Science and Technology Proceedings of Korea, Korea Society of Wood. Seoul, Korea. 2012. pp. 24-25.
L. Davenne, L. Daudeville, N. Kawai, M. Yasumura. A numerical analysis of shear walls structural performance. Proceedings of the CIB-W18 meeting 19. Vancouver, Canada. 1997. pp. 1-10.
ASTM. Standard Practice for Application of Cellulosic Fiber Insulating Board for Wall Sheathing C846. Ed. American Society for Testing and Materials. West Conshohocken, USA. 2009. pp. 1515.
C. Bermudez. Análisis y Diseño de Uniones a Momento en Perfiles de Lámina Doblada en Frío. VII Jornadas de Estructuras en Acero: Perfiles conformados en frío o en lámina delgada. Bogotá, Colombia. 2010. pp. 75-86.
FEMA. Home Builders Guide to Seismic Resistant Construction. FEMA 232. Ed. National Institute of Building Sciences. Washington D.C., USA. 2006. pp.212 17.
P. Guerrero, C. Gaviria. Comportamiento Experimental de Muros con Perfiles de Acero de Lámina Delgada y Placas de Ferrocemento. Memories of 10th International Symposium on Ferrocement and Thin Reinforced Cement Composite -FERRO10. Ed. Obras UNAICC. La Habana, Cuba. 2012. pp. 223-242.
A. Guerrero. Desarrollo de un sistema Industrializado de muros livianos para la construcción de vivienda. Informe Técnico Final de Investigación. Universidad del Valle -Colciencias-Perfilamos. Cali, Colombia. 2010. pp. 147.
ASTM. Standard Test Methods for Cyclic (Reversed) Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings ASTM E2126. Ed. American Society for Testing and Materials. West Conshohocken, USA. 2009. pp. 15
S. Catacolí, J. García, P. Thomson, A. Guerrero. "Comportamiento mecánico de un panel del sistema constructivo de muros tendinosos Parte I: Modelo Computacional No Lineal Y Experimentos De Vibración Libre". Revista Internacional de Ingeniería de Estructuras. Vol. 9. 2004. pp. 45-56.
S. Vagh, D. Dolan, S. Easterling. Effect of Anchorage and Sheathing Configuration on the Cyclic Response of Long Steel-Frame Shear Walls. Virginia Polytechnic Institute and State University. Report No. TE-2000- 002. Virginia, USA. 2007. pp. 97.
Z. Xuhong, S. Yu, Z. Tianhua, L. Yongjian, D. Jin. "Study on Shear Resistance of Cold-Formed Steel Stud Walls in Residential Structure. Advances in Engineering Structures, Mechanics & Construction". 2006. pp. 423-435. DOI: https://doi.org/10.1007/1-4020-4891-2_35
R. Dannemann. Manual de Ingeniería de Steel Framing. 1a ed., Ed. Instituto Latinoamericano del Fierro y Acero. Santiago de Chile, Chile. 2005, pp.147.
Lusas FEA Software V14.1 , FEA Ltd. Surrey, United Kingdom. 2009.
ASTM. Standard Test Methods and Definitions for Mechanical Testing of Steel Products - ASTM A370. Ed. American Society for Testing and Materials. West Conshohocken, USA. 2008. pp. 48.
ASTM. Standard Test Methods for Physical Testing of Gypsum Panel Products ASTM C473, Ed. American Society for Testing and Materials. West Conshohocken, USA. 2007. pp. 16
ASTM. Standard Test Methods for Sampling and Testing Non-Asbestos Fiber-Cement Flat Sheet, Roofing and Siding Shingles, and Clapboards – ASTM C1185. Ed. American Society for Testing and Materials. West Conshohocken, USA. 2008. pp. 9
ASTM. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading) – ASTM C293 . Ed. American Society for Testing and Materials. West Conshohocken, USA. 2008. pp.4
J. De la Horra. Estadística aplicada. 3a .ed. Ed. Ediciones Días de Santos. Madrid. España. 2003. pp 357.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.