A nonlinear finite element model of lightweight walls with cold formed steel members under lateral load

Authors

  • Carlos Andrés Gaviria M. Valley University
  • Aydée Patricia Guerrero Z. Valley University
  • Peter Thomson R. Valley University

DOI:

https://doi.org/10.17533/udea.redin.18145

Keywords:

cold formed steel framing, finite element, model updating, lateral load, shear wall panels

Abstract

This article presents the results of an investigation aimed at generating finite element models (FEM) for studying lateral load behavior of lightweight walls composed of a typical steel framing and different coating materials. Initially, the elements and connections were characterized with standard tests, based on this information and research by [1] finite element models were built that included the nonlinear behavior of the connections between elements. This model was updated for different coating materials using experimental results of lateral loads test conduced on full-scale prototypes for five different coating configurations. However large differences were found when compared the model updating parameters with initial parameters on the FEM model. These differences are attributed to the dissimilar materials working together as a composite rather than as individually. The model was validated with a configuration combining coating materials producing results with a 6.9% difference with respect to experimental data. This indicates an acceptable predictability of the model for other coating materials.

|Abstract
= 133 veces | PDF (ESPAÑOL (ESPAÑA))
= 73 veces|

Downloads

Download data is not yet available.

Author Biographies

Carlos Andrés Gaviria M., Valley University

Research Group on Seismic Engineering, Wind Engineering and Intelligent Structures, G-7, School of Civil Engineering and Geomatics.

Aydée Patricia Guerrero Z., Valley University

Research Group on Seismic Engineering, Wind Engineering and Intelligent Structures, G-7, School of Civil Engineering and Geomatics.

Peter Thomson R., Valley University

Research Group on Seismic Engineering, Wind Engineering and Intelligent Structures, G-7, School of Civil Engineering and Geomatics.

References

S. Andreasson, M. Yasumura. L. Daudeville. Sensitivity Study of the Finite Element Model for Wood-Framed Shear Walls”. Journal of Wood Science. Vol. 48. No 3. 2002. pp 171-178. DOI: https://doi.org/10.1007/BF00771363

L. Xu, J. Martínez. "Strength and stiffness determination of shear wall panels in cold-formed steel framing". Thin-Walled Structures. Vol. 44. 2006. pp. 1084-1095. DOI: https://doi.org/10.1016/j.tws.2006.10.002

IRC2009. International Residential Code For one- and two-family Dwellings. Ed. International Code Council. Inc. 1th ed. 2009. Washington, D.C. USA. pp. 868

AISI. North American standard for cold-formed steel framing-lateral design. S213. Ed. American Iron and Steel Institute. Washington, USA. 2007. pp.73.

J.K, Sinha, A. Rama, R.K, Sinha. Advantage of the Updated Model of Structure: A Case Study. Nuclear Engineering and Design. Vol. 232. 2004. pp 1-6. DOI: https://doi.org/10.1016/j.nucengdes.2004.03.010

L. Fiorino, G. Dellacorte, R. Landolfo. “Experimental tests on typical screw connections for cold-formed steel housing”. Engineering Structures. Vol. 29. 2007. pp. 1761-1773. DOI: https://doi.org/10.1016/j.engstruct.2006.09.006

B. Xia, J. Dong. "Finite Element Analysis of the Lateral Force Resistance of Light Gauge Steel Framed Compound Bearing Walls". Building Structure Supplement. No. 8. 2004. pp. 334-337.

S. Pei, J. Van de Lindt. "Seismic numerical modeling of a six-story light-frame wood building: Comparison with experiments". Journal of Earthquake Engineering. Vol. 15. 2011. pp. 924-941. DOI: https://doi.org/10.1080/13632469.2010.544840

I. Christovasilis, A. Filiatrault. A two-dimensional numerical model for the seismic collapse assessment of light-frame wood structures. ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Rhodes, Greece. 2009. pp. 24 DOI: https://doi.org/10.1061/41130(369)76

L. Fülöp, D. Dubina. "Performance of wall-stud coldformed shear panels under monotonic and cyclic loading Part II: Numerical modeling and performance analysis. Thin-Walled Structures". Vol. 42. 2004. pp. 339-349. DOI: https://doi.org/10.1016/S0263-8231(03)00064-8

A. Blasetti, R. Hoffman, D. Dinehart. "Simplified hysteretic finite element model for wood and viscoelastic polymer connections for the dynamic analysis of shear walls". Journal of Structural Engineering. Vol. 134. No. 1, 2008, pp. 77-86. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(77)

J. Humbert, J. Baroth. Predictive models for panelsheathed shear walls under seismic loadings. Wood Science and Technology Proceedings of Korea, Korea Society of Wood. Seoul, Korea. 2012. pp. 24-25.

L. Davenne, L. Daudeville, N. Kawai, M. Yasumura. A numerical analysis of shear walls structural performance. Proceedings of the CIB-W18 meeting 19. Vancouver, Canada. 1997. pp. 1-10.

ASTM. Standard Practice for Application of Cellulosic Fiber Insulating Board for Wall Sheathing C846. Ed. American Society for Testing and Materials. West Conshohocken, USA. 2009. pp. 1515.

C. Bermudez. Análisis y Diseño de Uniones a Momento en Perfiles de Lámina Doblada en Frío. VII Jornadas de Estructuras en Acero: Perfiles conformados en frío o en lámina delgada. Bogotá, Colombia. 2010. pp. 75-86.

FEMA. Home Builders Guide to Seismic Resistant Construction. FEMA 232. Ed. National Institute of Building Sciences. Washington D.C., USA. 2006. pp.212 17.

P. Guerrero, C. Gaviria. Comportamiento Experimental de Muros con Perfiles de Acero de Lámina Delgada y Placas de Ferrocemento. Memories of 10th International Symposium on Ferrocement and Thin Reinforced Cement Composite -FERRO10. Ed. Obras UNAICC. La Habana, Cuba. 2012. pp. 223-242.

A. Guerrero. Desarrollo de un sistema Industrializado de muros livianos para la construcción de vivienda. Informe Técnico Final de Investigación. Universidad del Valle -Colciencias-Perfilamos. Cali, Colombia. 2010. pp. 147.

ASTM. Standard Test Methods for Cyclic (Reversed) Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings ASTM E2126. Ed. American Society for Testing and Materials. West Conshohocken, USA. 2009. pp. 15

S. Catacolí, J. García, P. Thomson, A. Guerrero. "Comportamiento mecánico de un panel del sistema constructivo de muros tendinosos Parte I: Modelo Computacional No Lineal Y Experimentos De Vibración Libre". Revista Internacional de Ingeniería de Estructuras. Vol. 9. 2004. pp. 45-56.

S. Vagh, D. Dolan, S. Easterling. Effect of Anchorage and Sheathing Configuration on the Cyclic Response of Long Steel-Frame Shear Walls. Virginia Polytechnic Institute and State University. Report No. TE-2000- 002. Virginia, USA. 2007. pp. 97.

Z. Xuhong, S. Yu, Z. Tianhua, L. Yongjian, D. Jin. "Study on Shear Resistance of Cold-Formed Steel Stud Walls in Residential Structure. Advances in Engineering Structures, Mechanics & Construction". 2006. pp. 423-435. DOI: https://doi.org/10.1007/1-4020-4891-2_35

R. Dannemann. Manual de Ingeniería de Steel Framing. 1a ed., Ed. Instituto Latinoamericano del Fierro y Acero. Santiago de Chile, Chile. 2005, pp.147.

Lusas FEA Software V14.1 , FEA Ltd. Surrey, United Kingdom. 2009.

ASTM. Standard Test Methods and Definitions for Mechanical Testing of Steel Products - ASTM A370. Ed. American Society for Testing and Materials. West Conshohocken, USA. 2008. pp. 48.

ASTM. Standard Test Methods for Physical Testing of Gypsum Panel Products ASTM C473, Ed. American Society for Testing and Materials. West Conshohocken, USA. 2007. pp. 16

ASTM. Standard Test Methods for Sampling and Testing Non-Asbestos Fiber-Cement Flat Sheet, Roofing and Siding Shingles, and Clapboards – ASTM C1185. Ed. American Society for Testing and Materials. West Conshohocken, USA. 2008. pp. 9

ASTM. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading) – ASTM C293 . Ed. American Society for Testing and Materials. West Conshohocken, USA. 2008. pp.4

J. De la Horra. Estadística aplicada. 3a .ed. Ed. Ediciones Días de Santos. Madrid. España. 2003. pp 357.

Published

2014-01-20

How to Cite

Gaviria M., C. A., Guerrero Z., A. P., & Thomson R., P. (2014). A nonlinear finite element model of lightweight walls with cold formed steel members under lateral load. Revista Facultad De Ingeniería Universidad De Antioquia, (69), 136–151. https://doi.org/10.17533/udea.redin.18145