Dynamics Study of Processes Fracture and Fiber-Reinforced Materials Delamination
DOI:
https://doi.org/10.17533/udea.redin.18654Keywords:
interface, delamination, fiber, matrix, fractureAbstract
With the construction of a plane model, a qualitative study was made in order to observe the transactions that are developed during the fracture process and its simulation on different sections of a composite, from the accumulation of the damage stage to the moment when the crack propagates abruptly causing a macro fracture. An algorithm was developed to observe the stress redistribution processes and the compound is simulated including packaging defects of the filaments. During the study of the fracture processes in reinforced composites there are many factors to consider that are interrelated and that have a casual character. The mechanical properties of the fibers and the matrix, the matrix-fiber adherence and the resistance of the interface, all vary with the application of the load. The use of computational methods opens great possibilities for the development of the simulation and the models of the fracture processes.
Downloads
References
I. Kopyov, A. Ovchinsky, N. Bilsagayev. “Computer Simulation of Various Fracture Mechanisms in Fibrous Composite Materials”. Fracture of Composite Materials. 1st ed. Ed. Martinus Nijhoff Publishers. A. A. Baikov Metallurgy Institute, Academy of Science Moscow. Moscow, Russia. 1982. pp. 45-52. DOI: https://doi.org/10.1007/978-94-009-7609-2_4
A. Ovchinsky, I. Kopyov, N. Bilsagayev. “El método de trazar la deformación de los materiales compuestos de acuerdo con la distribución estadística de la fuerza en las fibras de refuerzo”. Mecánica de polímeros (Механика полимеров). No. 6. Ed. Polimēru mehānikas institūts, Latvijas Universitāte. Riga, Letonia. 1975. pp. 1021-1031.
E. Hait. “Fracture dynamic in reinforced composites”. Conferences. No. 3. Ed. Russian Academy of Science. Moscow, Russia. 1975. pp. 572-774.
M. Stepanenko. “Numerical experiment on the dynamics of destruction of composite material”. Mexanika Kompozitnij materialov. No. 1. 1981. pp. 53-59. DOI: https://doi.org/10.1007/BF00604882
C. Guo, C. Sun. “Dynamic Mode-I crack-propagation in a carbon/epoxy composite”. Composites Science and Technology. Vol. 58. 1998. pp. 1405–1410. DOI: https://doi.org/10.1016/S0266-3538(98)00025-6
L. Greszczuk. “Theoretical studies of the mechanics of the fiber-matrix interface in composites”. Interfaces in composites. Ed. American Society for Testing and Materials. New York, USA. 1969. pp. 42-58. DOI: https://doi.org/10.1520/STP44699S
J. Ivens, H. Albertsen, M. Wevers, I. Verpoest, P. Peters. “Interlaminar fracture toughness of CFRP influenced by fiber surface treatment: Part 2. Modelling of the interface effect”. Composites Science and Technology. Vol. 54. 1995. pp. 147-159. DOI: https://doi.org/10.1016/0266-3538(95)00049-6
L. Wu, D. Tjahjanto, G. Becker, A. Makradi, A. Jérusalem, L. Noels. “A micro-meso-model of intralaminar fracture in fiber.reinforced composites based on a discontinuos Galerkin / cohesive zone method”. Eng. Fract. Mech. Vol. 104. 2013. pp. 162-183. DOI: https://doi.org/10.1016/j.engfracmech.2013.03.018
H. Albertsen, J. Ivens, M. Wevers, I. Verpoest, P. Peters. “Interlaminar fracture toughness of CFRP influenced by fibre surface treatment: Part 1. Experimental results”. Comp. Sci. Tech. Vol. 54. 1995. pp. 133-47. DOI: https://doi.org/10.1016/0266-3538(95)00048-8
L. Broutman. “Measurement of the fiber polymer matrix interfacial strength”. Interfaces in composites. Ed. American Society for Testing and Materials, 1st, ed. New York, USA. 1969. pp. 27-41. DOI: https://doi.org/10.1520/STP44698S
P. Yang, H. Sue. “Effects of fiber forms on compressive strength after impact of composites”. Polym. Mater. Sci. Vol.70. 1993. pp. 61-63.
H. Chai. “Observation of deformation and damage at the tip of cracks in adhesive bonds loaded in shear and assessment of a criterion for fracture”. Int. J. Fract. Vol. 60. 1993. pp. 311-326. DOI: https://doi.org/10.1007/BF00034739
E. Pietropaoli, “Progressive Failure Analysis of Composite Structures Using a Constitutive Material Model (USERMAT) Developed and Implemented in ANSYS ©”. Appl. Compos. Mater. Vol. 19. 2012. pp. 657-668. DOI: https://doi.org/10.1007/s10443-011-9220-0
F. Greco, L. Leonetti, P. Lonetti. “A two-scale failure analysis of composite materials in presence of fiber/ matrix crack initiation and propagation”. Composite Structures. Vol. 95. 2013. pp. 582–597. DOI: https://doi.org/10.1016/j.compstruct.2012.08.035
L. Lammerant, I. Verpoest. “Modelling of the interaction between matrix cracks and delaminations during impact of composite plates”. Composites Science and Technology. Vol. 56. 1996. pp. 1171–1178. DOI: https://doi.org/10.1016/S0266-3538(96)00071-1
M. Tamayo. Evaluation of the Adherence Force of Aluminum Fibers in Composites Obtained by Plasma Deposition. IPCM-89, Proceeding, University of Sheffield. Sheffield, UK. 1989. pp. 5-7.
T. Cheng, R. Qiao, Y. Xia. “A Monte Carlo simulation of damage and failure process with crack saturation for unidirectional fiber reinforced ceramic composites”. Composites Science and Technology. Vol. 64. 2004. pp. 2251-2260. DOI: https://doi.org/10.1016/j.compscitech.2004.04.001
Z. Mikulika, D. Kellya, B. Prustya, R. Thomsonb. “Prediction of flange debonding in composite stiffened panels using an analytical crack tip element-based methodology”. Composite Structures. Vol. 85. 2008. pp. 233-244. DOI: https://doi.org/10.1016/j.compstruct.2007.10.027
A. Ayyara, N. Chawlab. “Microstructure-based modeling of crack growth in particle reinforced composites”. Composites Science and Technology. Vol. 66. 2006. pp. 1980-1994. DOI: https://doi.org/10.1016/j.compscitech.2006.01.007
S. Soni, R. Kim. “Delamination of composite laminates stimulated by interlaminar shear”. J. Whitmey (editor). Composite Materials: Testing and Design. Ed. American Society for Testing and Materials. New York, USA. 1986. pp. 7-33.
S. Pemberton, E. Oberg, J. Dean, D. Tsarouchas, A. Markaki, L. Marston, T. Clyne. “The fracture energy of metal fibre reinforced ceramic composites (MFCs)”. Composites Science and Technology. Vol. 71. 2011. pp. 266-275. DOI: https://doi.org/10.1016/j.compscitech.2010.10.011
Y. Zhang, C. Yang, “Recent developments in finite element analysis for laminated composite plates.” Journal of Composite Structures. Vol. 88. 2009. pp. 147-157. DOI: https://doi.org/10.1016/j.compstruct.2008.02.014
Y. Taoling, L. Yunbo, J. Wang. “A study of the propagation of an embedded crack in a composite laminate of finite thickness”. Composite Structures. Vol. 59. 2003. pp. 473-479. DOI: https://doi.org/10.1016/S0263-8223(02)00284-2
J. Tan, J. Elliot, T. Clyne. “Analysis of tomography images of bonded fiber networks to measure distributions of fiber segment length and fiber orientation”. Advanced Engineering Materials. Vol. 8. 2006. pp. 495-500. DOI: https://doi.org/10.1002/adem.200600033
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.