Fusion of WorldView2 images using Contourlet, Curvelet and Ridgelet transforms for edge enhancement
DOI:
https://doi.org/10.17533/udea.redin.n85a02Keywords:
contourlet, curvelet, ridgelet, wavelet, image fusionAbstract
This article discusses the implementation of three transforms, namely Contourlet, Curvelet and Ridgelet, which are intended for image edge enhancement. These transforms were applied to fused Worldview 2 satellite images. The fusion was performed over the WorldView 2 satellite images applying various types of wavelet transforms, such as Daubechies, Bior, rbior, Coiflet and Symlet 5, with different levels of decomposition. The best results were obtained for the case of Symlet 5, level 5. Wavelet fused images and the generated images (using Contourlet, Curvelet and transformed Ridgelet) were evaluated and analyzed quantitatively. Quantitative methods in the present analysis include ERGAS, RASE, Universal Quality (Qu) and correlation coefficient (CC). Image merging and the implementation of transforms were performed with MatLab®, which supplies the following tools: Wavelet toolbox, Image processing toolbox, Contourlet toolbox, and Curvelet and Ridgelet source code. The results show that the Curvelet and Ridgelet transforms yield better results in terms of edge enhancement for both the merged image and the original image.
Downloads
References
J. Medina, C. Pinilla, and L. Joyanes, ”Implementing Fast-Haar Wavelet transform on original Ikonos images to perform image fusion: qualitative assessment,” Rev. Fac. Ing. Univ. Antioquia, no. 71, pp. 72-84, 2014.
J. Cheng, H. Liu, T. Liu, F. Wang, and H. Li, ”Remote sensing image fusion via Wavelet transform and sparse representation,” ISPRS J. Photogramm. Remote Sens., vol. 104, pp. 158-173, 2015.
A. Collin and S. Planes, ”What is the value added of 4 bands within the submetric remote sensing of tropical coastscape? QuickBird-2 vs WorldView-2,” in Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, Vancouver, Canada, 2011, pp. 2165-2168.
G. Simone, A. Farina, F. C. Morabito, S. B. Serpico, and L. Bruzzone, ”Image fusion techniques for remote sensing applications,” Inf. Fusion, vol. 3, no. 1, pp. 3-15, 2002.
S. G. Mallat, ”A theory for multiresolution signal decomposition: the Wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674-693, 1989.
R. J. Medina, L. Joyanes, C. Pinilla, O. Ardila, and F. Pineda, ”Evaluación de la fusión de imágenes satelitales usando la Transformada rápida de Wavelet haar y contourlet,” in 11th Latin American and Caribbean Conference for Engineering and Technology, Cancun, Mexico, 2013, pp. 1-10.
N. A. Al-Azzawi, H. A. Mat, and A. K. Wan, ”An efficient medical image fusion method using contourlet transform based on PCM,” in IEEE Symposium on Industrial Electronics Applications. ISIEA, Kuala Lumpur, Malaysia, 2009, pp. 11-14.
J. Adu, J. Gan, Y. Wang, and J. Huang, ”Image fusion based on nonsubsampled contourlet transform for infrared and visible light image,” Infrared Phys. Technol., vol. 61, pp. 94-100, 2013.
M. Choi et al., ”The curvelet transform for image fusion,” Int. Soc. Photogramm. Remote Sens. ISPRS, vol. 35, pp. 59-64, 2004.
T. Chen, J. Zhang, and Y. Zhang, ”Remote sensing image fusion based on ridgelet transform,” in IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05. Proceedings. 2005 IEEE International, Seoul, South korea, 2005, pp. 1150-1153.
C. A. Balbuena, ”Método de protección con “marca de agua” para imágenes digitales, utilizando una técnica de representación orientada geometricamente: contourlet,” M.S. thesis, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico, 2007.
J. E. Victorino, ”Representación eficiente de una base de datos de imágenes 4D de resonancia magnética cardíaca,” M.S. thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2011.
L. P. Pazmiño, ”Aplicación de la Transformada Wavelet en dos dimensiones para el análisis y compresión de imágenes,” M.S. thesis, ESPE, Sangolquí, Ecuador, 2012.
A. Fernández, ”Estudio de técnicas basadas en la transformada Wavelet y optimización de sus parámetros para la clasificación por texturas de imágenes digitales,” Ph.D. dissertation, Universidad Politecnica de Valencia, Valencia, España, 2007.
L. Chun-Lin, ”A Tutorial of the Wavelet transform”, NTUEE Taiwan, 2010.
P. M. Vitousek, ”Beyond global warming: ecology and global change,” Ecology, vol. 75, no. 7, pp. 1861-1876, 1994.
M. N. Do and M. Vetterli, ”Contourlets,” Stud. Comput. Math., vol. 10, pp. 83-105, 2003.
P. J. Burt and E. H. Adelson, ”The Laplacian pyramid as a compact image code,” IEEE Trans. on Commun., vol. 31, no. 4, pp. 532-540, 1983.
D. L. Donoho and M. R. Duncan, ”Digital curvelet transform: strategy, implementation, and experiments,” in AeroSense, Orlando, USA, 2000, pp. 12-30.
W. Junzheng, Y. Weidong, B. Hui, and N. Weiping, ”A despeckling algorithm combining curvelet and wavelet transforms of high resolution SAR images,” in International Conference on Computer Design and Applications (ICCDA), Qinhuangdao, China, 2010, vol. 1. pp. 302-305.
E. J. Candes, & D. L. Donoho, (2000). Curvelets: A surprisingly effective nonadaptive representation for objects with edges. Stanford Univ Ca Dept of Statistics. pp. 1-16, https://statweb.stanford.edu/donoho/Reports/1999/curveletsurprise.pdf.
J. Nuñez et al., ”Multiresolution-based image fusion with additive wavelet decomposition,” IEEE transactions on geoscience and remote sensing, vol. 37, no. 3, pp. 1204-1211, 1999.
J. L. Starck, E. J. Candes, and D. L. Donoho, ”The curvelet transform for image denoising,” IEEE Transactions on Image Processing, vol. 11, no. 6, pp. 670-684, 2002.
A. D. Vaiopoulos, ”Developing Matlab scripts for image analysis and quality assessment,” Proceedings of the SPIE, vol. 8181, no. 1, pp. [a] 12, 2011.
R. J. Medina, C. P. Ruiz, and L. Joyanes, ”Two-dimensional fast Haar Wavelet transform for satellite-image fusion,” J. Appl. Remote Sens., vol. 7, no. 1, pp002E 073698-073698, 2013.
J. Medina, L. Joyanes, and C. Pinilla, ”Aplicativo Web para la Fusión de Imágenes Satelitales,” RISTI - Revista Ibérica de Sistemas e Tecnologias de Informação, no. 11, pp. 17-30, 2013.
L. Wald, Data fusion: definitions and architectures: fusion of images of different spatial resolutions, Paris, France: Presses des MINES, 2002.
R. Morales and J. H. S. Azuela, Procesamiento y Análisis Digital de Imágenes, 1st ed. México D.F.: Alfaomega Grupo Editor, S.A. de C.V., 2012.
Z. Wang and A. C. Bovik, ”A universal image quality index,” IEEE Signal Process. Lett., vol. 9, no. 3, pp. 81-84, 2002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.