Development of an armored upper limb exoskeleton
DOI:
https://doi.org/10.17533/udea.redin.20191148Keywords:
assistive robotics, wearable robots, robot kinematics, mechatronicsAbstract
Personal safety is a critical aspect of daily life, but also in the military. Active soldiers often have to carry heavy gear during missions, which puts pressure on their backs. Therefore, the military must come up with new technologies that allow both protection and movement. In this paper, it is explaining the development of an armored upper limb exoskeleton with three degrees of freedom. To ensure portability, it is used battery-fed DC actuators. The system was encased in a metal matrix that doubles up as a protective plate. The exoskeleton, the control system, the actuators, and the plate are integrated so that they offer protection while supporting the flexion and extension of the upper limb.
Downloads
References
The Titan Arm, ASTM Standardization News, 2013.
E. Yagi, D. Harada, and M. Kobayashi, “Upper-limb power-assist control for agriculture load lifting,” Int. J. Autom. Technol., vol. 3, no. 6, 2009. [Online]. Available: https://doi.org/10.20965/ijat.2009.p0716
H. Kawasaki and et al, “Hand motion assist robot for rehabilitation therapy,” J. Robot. Mechatronics, vol. 26, no. 1, pp. 103–104, Feb. 2014.
T. Ando and et al, “Myoelectric-controlled exoskeletal elbow robot to suppress essential tremor: Extraction of elbow flexion movement using STFTs and TDNN,” J. Robot. Mechatronics, vol. 24, no. 1, february 2012. [Online]. Available: https://doi.org/10.20965/jrm.2012.p0141
L. Xiangpan, “Design of wearable wearable wearable wearable power assist wear for low back support support support support using pneumatic pneumatic pneumatic pneumatic actuators,” Ph.D thesis, Okayama University, Okayama, Japan, 2013.
X. Wang, Q. Song, X. Wang, and P. Liu, “Kinematics and dynamics analysis of a 3-DOF upper-limb exoskeleton with an internally rotated elbow joint,” Appl. Sci., vol. 8, pp. 1–19, Mar. 2018.
M. H. Rahman, M. Saad, J. P. Kenné, P. S. Archambault, and T. K. Ouimet, “Development of a 4DoFs exoskeleton robot for passive arm movement assistance,” Int. J. Mechatronics Autom, vol. 2, no. 1, January 2012. [Online]. Available: https://doi.org/10.1504/IJMA.2012.046587
Y. Matsumoto and et al, “Development of an exoskeleton to support eating movements in patients with essential tremor,” J. Robot. Mechatronics, vol. 25, no. 6, pp. 949–958, Dec. 2013.
J. L. Pons, Wearable Robots: Biomechatronic Exoskeletons. Madrid, España: John Wiley & Sons, 2008.
K. Anam and A. A. Al-Jumaily, “Active exoskeleton control systems: State of the art,” Procedia Eng., vol. 41, 2012. [Online]. Available: https://doi.org/10.1016/j.proeng.2012.07.273
I. G. Crouch, “Introduction to armour materials,” in The Science of Armour Materials, I. G. Crouch, Ed. United Kingdom: Elsevier, 2016, pp. 1–54.
C. M. Wenig, C. O. Schmidt, T. Kohlmann, and B. Schweikert, “Costs of back pain in germany,” Eur. J. Pain, vol. 13, no. 3, March 2009. [Online]. Available: https://doi.org/10.1016/j.ejpain.2008.04.005
(2015) From HULC to MANTIS to FORTIS exoskeleton: Development history. Exoskeleton. Accessed May. 09, 2017. [Online]. Available: https://bit.ly/33lL1FP
xos 2. Exoskeleton. Accessed May. 02, 2017. [Online]. Available: https://rtn.co/2OzHv6G
Raytheon XOS 2 exoskeleton, second-generation robotics suit. Army-Technology. Accessed Nov. 27, 2017. [Online]. Available: https://bit.ly/2oyu6Or
V. Sanchéz and M. J. Sánchez, Materiales para la Defensa, 1st ed. Madrid, España: VA. Impresores, 2012.
H. Vladimir and M. F. Valencia, “Semisolid processing of Al/β-SiC composites by mechanical stirring casting and high pressure die casting,” in Recent Researches in Metallurgical Engineering - From Extraction to Forming, G. Ahuett and A. Arrambide, Eds. Intech Open Science, 2012, pp. 125–142.
M. F. Valencia, “Procesamiento semisólido de compuestos Al/SiC por agitación mecánica, para elaborar componentes compoforjados,” M.S. thesis, Universidad Pontificia Bolivariana, Medellín, Colombia, 2011.
W. Chen and et al, “Multi-scale experiments on soft body armors under projectile normal impact,” Int. J. Impact Eng., vol. 108, October 2017. [Online]. Available: https://doi.org/10.1016/j.ijimpeng.2017.04.018
H. V. Martínez and et al, “One-step SSM process by MSC & HPDC for metallic components,” Solid State Phenom., vol. 141, January 2008. [Online]. Available: https://doi.org/10.4028/www.scientific.net/SSP.141-143.103
S. Balasubramanian and et al, “RUPERT: An exoskeleton robot for assisting rehabilitation of arm functions,” in Virtual Rehabilitation, Vancouver, BC, Canada, 2008, pp. 163–167.
W. Yu, J. Rosen, and X. Li, “PID admittance control for an upper limb exoskeleton,” in American Control Conference, San Francisco, CA, USA, 2011, pp. 1124–1129.
M. Ishii, K. Yamamoto, and K. Hyodo, “Stand-alone wearable power assist suit –development and availability–,” J. Robot. Mechatronics, vol. 17, no. 5, March 2006. [Online]. Available: https://doi.org/10.1299/kikaic.72.857
P. Letier, “Bras exosquelette haptique conception et contrôle laboratoire des structures actives,” PhD dissertation, Université Libre de Bruxelles, Bruxelles, Belgium, 2010.
M. Couvertier, T. Monnet, and P. Lacouture, “Identification of human body segment inertial parameters,” in 22nd Congr. Eur. Soc. Biomech., Lyon, France, 2016.
B. Ugurlu, M. Nishimura, K. Hyodo, M. Kawanishi, and T. Narikiyo, “Proof of concept for robot-aided upper limb rehabilitation using disturbance observers,” IEEE Trans. Human-Machine Syst., vol. 45, no. 1, pp. 110–118, Feb. 2015.
J. Clerval, R. Lacombe, M. Adolphe, B. Zagrodny, and Z. Kirchof, “Center of mass of human’s body segments,” Mech. Mech. Eng, vol. 21, no. 3, pp. 485–497, 2017.
A. Barrientos, C. Balaguer, L. F. Peñin, and R. Aracil, Fundamentos de Robótica, 2nd ed. Aravaca, Madrid: McGraw-Hill, 2007.
J. Rosen, J. C. Perry, N. Manning, S. Burns, and B. Hannaford, “The human arm kinematics and dynamics during daily activities - toward a 7 DOF upper limb powered exoskeleton,” in 12th International Conference on Advanced Robotics, Seattle, WA, USA, 2005.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.