Potential infiltration and morphometry in the Arroyo Grande basin, Sucre Colombia

Authors

DOI:

https://doi.org/10.17533/udea.redin.20191043

Keywords:

Curve Number, infiltration, groundwater, morphometry, recharge

Abstract

For areas that supply underground water sources, it is important to identify the conditions of circulation and infiltration of surface water as a fundamental contribution to the recharge, sustainability and protection of aquifers. A study of the potential infiltration capacity considering the geomorphological aspects in the Arroyo Grande basin, Sucre, Colombia is presented. The aquifers of the study area are at risk of water supply due to the intense extraction and contamination by urban discharges in the surface currents of the basin. Morphometric indicators were applied to study the forms and dynamics of currents; For the estimation of the potential infiltration, the curve number method (CN-SCS) was used; all analyzes were performed with GIS tools. The results described the drainage conditions of the surface, identified the areas with the highest Infiltration potential over the Morroa aquifer, and the factors that directly influence the water regulation process.

|Abstract
= 1006 veces | PDF
= 657 veces| | HTML
= 0 veces|

Downloads

Download data is not yet available.

Author Biographies

Felix Domínguez-Pérez, University of Sucre

Water and Environmental Chemistry Research Group.

Teobaldis Mercado-Fernández, University of Córdoba

PhD. in Hydroscience, Professor and Researcher.

References

L. Donado and J. Buitrago, “Evaluación de las condiciones de explotación del agua subterránea en la zona de recarga del acuífero Morroa, departamentos de Sucre y Córdoba, Colombia,” M.S. thesis, Universidad Nacional de Colombia, Colombia, 2000.

CARSUCRE. (2016) Plan de acción institucional 2016-2019. [Online]. Available: https://bit.ly/2kuMQPS

V. Vergara, G. Gutiérrez, and H. Flórez, “Evaluación de la vulnerabilidad del acuífero Morroa a contaminación por plaguicidas aplicando la metodología DRASTIC,” Revista Científica Ingeniería y Desarrollo, no. 26, 2009.

D. Maitre, I. Kotze, and P. Farrell, “Impacts of land-cover change on the water flow regulation ecosystem service: Invasive alien plants, fire and their policy implications,” Land Use Policy, vol. 36, january 2014. [Online]. Available: https://doi.org/10.1016/j.landusepol.2013.07.007

R. De Groot and M. Wilson and R. Boumans, “A typology for the classification, description and valuation of ecosystem functions, goods and services,” Ecological Economics, vol. 41, no. 3, june 2002. [Online]. Available: https://doi.org/10.1016/S0921-8009(02)00089-7

K. Brauman, G. Daily, T. Duarte, and H. Mooney, “The nature and value of ecosystem services: An overview highlighting hydrologic services,” Annual Review of Environment and Resources, vol. 32,no. 1, december 2007. [Online]. Available: https://doi.org/10.1146/annurev.energy.32.031306.102758

A. Strahler, “Hypsometric (area - altitude) analysis of erosional topography,” Annual Review of Environment and Resources, vol. 63, no. 11, january 1952. [Online]. Available: https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2

R. Horton, “Drainage-basin characteristics,” Eos, Transactions American Geophysical Union, vol. 13, no. 1, june 1932. [Online]. Available: https://doi.org/10.1029/TR013i001p00350

R. Horton, “Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology,” Bulletin of the Geological Society of America, vol. 56, no. 3, 1945. [Online]. Available: https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

R. Horton, “Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology,” Geological Society of America Bulletin, vol. 56, no. 3, March 1 1945. [Online]. Available: https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

A. Zabaleta, T. Mercado, J. Marrugo, and J. Feria, “Curve Number (CN) as Pressure Indicator of the Hydrological Condition under Global Warming Scenarios at a Local Scale in La Mojana Region, Colombia,” Indian Journal of Science & Technology, vol. 11, no. 29, august 2018. [Online]. Available: https://doi.org/10.17485/ijst/2018/v11i29/129276

A. Diaz and T. Mercado, “Determinación del número de curva en la subcuenca de Betancí (Córdoba, Colombia) mediante teledetección y SIG,” Ingeniería y desarrollo: revista de la División de Ingeniería de la Universidad del Norte, vol. 35, no. 22, pp. 452–470, jul-dec 2017.

S. Shadeed and M. Almasri, “Application of GIS-based SCS-CN method in West Bank catchments, Palestine,” Water Science and Engineering, vol. 3, no. 1, march 2010. [Online]. Available: https://doi.org/10.3882/j.issn.1674-2370.2010.01.001

M. Ferrér and J.Rodríguez and T. Estrela, “Generación automática del número de curva con sistemas de información geográfica,” Ingeniería del Agua, vol. 2, no. 4, december 1995. [Online]. Available: https://doi.org/10.4995/ia.1995.2686

Chapter 10-Estimation of Direct Runoff from Storm Rainfall, Part 630 Hydrology National Engineering Handbook, United States Department of Agriculture, Natural Resources Conservation Service, EE.UU., 2004.

T. Ruiz. (2016, jan) Evaluación de resultados año 2014. Proyecto fortalecimiento del programa regional de monitoreo del recurso hidrico. CARSUCRE. Sincelejo, Col. [Online]. Available: https://bit.ly/2lHeSrs

IDEAM. (1981-2010) Atlas climatológico de Colombia. IDEAM. Accessed jun. 3, 2018. [Online]. Available: https://bit.ly/2mY2X63

CARSUCRE. (2005) PROYECTO DE PROTECCIÓN INTEGRAL DE AGUAS SUBTERRÁNEAS “PPIAS”. [Online]. Available: https://bit.ly/2lSyJE9

M. Aguilera. (2005) La economia del departamento De Sucre : ganadería y sector público. [Banco de la República, Centro de estudios económicos regionales (CEER)-Cartagena]. [Online]. Available: https://bit.ly/2kn6g9u

F. Dominguez, “Infiltración potencial sobre la cuenca Arroyo Grande de la Sabana y su aporte a la recarga del acuifero Morroa, Sucre, Colombia,” unpublished.

J. Clavijo and R. Barrera, “Geología de las planchas 44 Sincelejo y 52 Sahagún, memoria explicativa,” INGEOMINAS, Bogotá, Col, Tech. Rep. Escala 1:100.000, 2001.

C. Madrid, “Memoria explicativa de la plancha 45 san pedro departamentos de sucre y bolívar,” Servicio Geológico Colombiano, Bogotá, Col, Tech. Rep., Mar. 2015.

H. Argumedo, G. Rodelo, and N. Rodriguez, “Caracterización hidroquímica y bacteriológica del acuifero de Morroa en los municipios de Sampués, Sincelejo, Morroa, Corozal y Los Palmitos en el Departamento de Sucre,” M.S. thesis, Universidad de Sucre, Sincelejo, Colombia, 2002.

I. Jimenez and L. Rodriguez, “Diagnostico de la infiltracion y permeabilidad en los suelos de la zona de recarga del acuifero Morroa en el area Sincelejo, Corozal y Morroa,” M.S. thesis, Universidad de Sucre, Sincelejo, Colombia, 2008.

IDEAM. (2015) Estudio nacional del agua 2014. [IDEAM]. [Online]. Available: https://bit.ly/1TrRtPc

A. Strahler, “Quantitative analysis of watershed geomorphology,” Eos, Transactions American Geophysical Union, vol. 38, no. 6, december 1957. [Online]. Available: https://doi.org/10.1029/TR038i006p00913

K. Smith, “Standards for grading texture of erosional topography,” American Journal of Science, vol. 248, no. 9, september 1950. [Online]. Available: https://doi.org/10.2475/ajs.248.9.655

N. Magesh, N. Chandrasekar, and J. Soundranayagam, “Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: a [GIS] approach,” Environmental Earth Sciences, vol. 64, no. 2, september 2010. [Online]. Available: https://doi.org/10.1007/s12665-010-0860-4

N. Magesh, N. Chandrasekar, and J. Soundranayagam, “GIS based morphometric evaluation of Chimmini and Mupily watersheds, parts of Western Ghats, Thrissur District, Kerala, India,” Earth Science Informatics, vol. 5, no. 2, may 2011. [Online]. Available: https://doi.org/10.1007/s12145-012-0101-3

P. Singh, J. Thakur, and U. Singh, “Morphometric analysis of Morar River Basin, Madhya Pradesh, India, using remote sensing and GIS techniques,” Environmental Earth Sciences, vol. 68, no. 7, pp. 1967–– 1977, Apr. 2013.

Urban Hydrology for Small Watersheds TR-55, Natural Resources Conservation Service, EE.UU., Jun. 1986. [Online]. Available: https://bit.ly/2kr3ifP

Module 205-SCS Runoff Equation, Natural Resources Conservation Service, EE.UU. [Online]. Available: https://bit.ly/2m1Qr8p

Chapter 9-Hydrologic Soil-Cover Complexes, Part 630 Hydrology National Engineering Handbook, United States Department of Agriculture, Natural Resources Conservation Service, EE.UU., 2004.

Chapter 8-Land Use and Treatment Classes, Part 630 Hydrology National Engineering Handbook, United States Department of Agriculture, Natural Resources Conservation Service, EE.UU., 2002.

X. Zhan and M. Huang, “ArcCN-Runoff: an ArcGIS tool for generating curve number and runoff maps,” Environmental Modelling & Software, vol. 19, no. 10, oct 2004. [Online]. Available: https://doi.org/10.1016/j.envsoft.2004.03.001

Chapter 7-Hydrologic Soil Groups, Part 630 Hydrology National Engineering Handbook, United States Department of Agriculture, Natural Resources Conservation Service, EE.UU., 2009.

C. Molano, G. Cifuentes, and C. Puentes, “Estudio hidrogeológico de agua subterránea de los municipios abastecidos por la formación Morroa. Bogotá (Colombia),” unpublished.

Downloads

Published

2020-02-21

How to Cite

Domínguez-Pérez, F., & Mercado-Fernández, T. (2020). Potential infiltration and morphometry in the Arroyo Grande basin, Sucre Colombia. Revista Facultad De Ingeniería Universidad De Antioquia, (96), 21–31. https://doi.org/10.17533/udea.redin.20191043