On the issue of automatic form accuracy during processing on CNC machines
DOI:
https://doi.org/10.17533/udea.redin.20201111Keywords:
vibration signal, correlogram analysis, neuro-fuzzy models, correlation entropy, neural network databaseAbstract
This work aims to develop technical solutions that allow providing the specified parameters of the accuracy of the shape of parts in the cross-section during processing on a CNC machine. Experimental studies were performed on a screw-cutting lathe. An acoustic signal in the range from 6 to 12 kHz was used as a diagnostic sign to assess the wear of the cutting tool, since during preliminary studies, it was found that this range is most sensitive to changes in processing modes. Studies were performed at different values of wear of the cutting tool (estimated by the width of the wear chamfer). For estimating the life of a cutting tool, a neuro-fuzzy model has been developed. Using models of this class allows adjusting to specific conditions (machine, tool), and correctly evaluating the tool life. The model error for the test sample does not exceed 10%. The test results showed that using the proposed solutions makes it possible to increase the accuracy of the manufacturing of shut-off valve parts by 20-30%.
Downloads
References
C. E. Patiño and G. F. M. de Souza, “Análisis de confiabilidad para herramientas de corte aplicado al proceso de taladrado,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 36, Mar. 2006. [Online]. Available: t.ly/6a14
F. Beltrán, E. Chávez, A. Favela, and R. F. Vásquez, “Active Perturbation Rejection in Motion Control of Milling Machine Tools,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 69, Oct-Dec. 2013. [Online]. Available: t.ly/LAk8
J. M. Arroyo, E. A. Patiño, D. A. Garzón, and C. J. Cortés,“Modelado del proceso de maquinado mediante el MEF y el uso de metamodelos con lógica difusa y regresión lineal,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 69, Oct-Dec. 2013. [Online]. Available: t.ly/9nsm
O. D. J. Copete and I. D. Arango, “Selective polishing method to increase precision in large format lightweight machine tools working with petrous material,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 90, Jan-Mar. 2019. [Online]. Available: https://doi.org/10.17533/udea.redin.n90a08
O. J. Zurita, V. C. D. Graci, and M. C. Capace, “Effect of surface hardness and roughness produced by turning on the torsion mechanical properties of annealed AISI 1020 steel,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 84, Jul-Sep. 2017. [Online]. Available: https://doi.org/10.17533/udea.redin.n984a07
G. Bejarano, J. Caicedo, and J. Muñoz, “Mechanical and tribological properties enhancement of heat treated AISI 4340 steel by using a TiN/TiAlN multilayer coating system,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 44, Apr-Jun. 2008. [Online]. Available: t.ly/WnzT
Z. Hessainia, A. Belbah, M. A. Yallese, T. Mabrouki, and J. F. Rigal, “On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations,” Measurement, vol. 46, no. 5, Jun. 2013. [Online]. Available: https://doi.org/10.1016/j.measurement.2012.12.016
M. H. Miguélez, L. Rubio, J. A. Loya, and J. Fernández, “Improvement of chatter stability in boring operations with passive vibration absorbers,” International Journal of Mechanical Sciences, vol. 52, no. 10, Oct. 2010. [Online]. Available: https://doi.org/10.1016/j.ijmecsci.2010.07.003
Y. Alammari, M. Sanati, T. Freiheit, and S. S. Park, “Investigation of Boring Bar Dynamics for Chatter Suppression,” Procedia Manufacturing, vol. 1, 2015. [Online]. Available: https://doi.org/10.1016/j.promfg.2015.09.059
J. C. Chen and W. L. Chen, “A tool breakage detection system using an accelerometer sensor,” Journal of Intelligent Manufacturing, vol. 10, Apr. 1999. [Online]. Available: https://doi.org/10.1023/A:1008980821787
L. M. D. Owsley, L. Atlas, and G. D. Bernard, “Self-organizing feature maps and hidden Markov models for machine-tool monitoring,” IEEE, vol. 45, no. 11, Nov. 1997. [Online]. Available: https://doi.org/10.1109/78.650105
R. E. Haber and A. Alique, “Intelligent process supervision for predicting tool wear in machining processes,” Mechatronics, vol. 13, no. 8-9, Oct. 2003. [Online]. Available: https://doi.org/10.1016/S0957-4158(03)00005-9
B. Sick, “On-Line and indirect tool wear monitoring in turning with Artificial Neural Networks: A review of more than a decade of research,” Mechanical Systems and Signal Processing, vol. 16, no. 4, Jul. 2002. [Online]. Available: https://doi.org/10.1006/mssp.2001.1460
N. A. Proskuryako, “Fuzzy Controllers in the Adaptive Control System of a CNC Lathe,” Russian Engineering Research, vol. 38, Apr. 26 2018. [Online]. Available: https://doi.org/10.3103/S1068798X18030188
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.