On the issue of automatic form accuracy during processing on CNC machines

Authors

  • Victor Ovsyannikov Tyumen Industrial University
  • Roman Nekrasov Tyumen Industrial University
  • Ulyana Putilova Tyumen Industrial University
  • Dmitry Il’yaschenko National Research Tomsk Polytechnic University https://orcid.org/0000-0003-0409-8386
  • Elena Verkhoturova Irkutsk National Research Technical University https://orcid.org/0000-0002-7733-7328

DOI:

https://doi.org/10.17533/udea.redin.20201111

Keywords:

vibration signal, correlogram analysis, neuro-fuzzy models, correlation entropy, neural network database

Abstract

This work aims to develop technical solutions that allow providing the specified parameters of the accuracy of the shape of parts in the cross-section during processing on a CNC machine. Experimental studies were performed on a screw-cutting lathe. An acoustic signal in the range from 6 to 12 kHz was used as a diagnostic sign to assess the wear of the cutting tool, since during preliminary studies, it was found that this range is most sensitive to changes in processing modes. Studies were performed at different values of wear of the cutting tool (estimated by the width of the wear chamfer). For estimating the life of a cutting tool, a neuro-fuzzy model has been developed. Using models of this class allows adjusting to specific conditions (machine, tool), and correctly evaluating the tool life. The model error for the test sample does not exceed 10%. The test results showed that using the proposed solutions makes it possible to increase the accuracy of the manufacturing of shut-off valve parts by 20-30%.

|Abstract
= 1404 veces | HTML
= 0 veces| | PDF
= 608 veces|

Downloads

Download data is not yet available.

Author Biographies

Victor Ovsyannikov, Tyumen Industrial University

Department of Technology,  Machine Building.

Roman Nekrasov, Tyumen Industrial University

Department of Technology, Machine Building.

Ulyana Putilova, Tyumen Industrial University

Department of Technology, Machine Building.

Dmitry Il’yaschenko, National Research Tomsk Polytechnic University

Department of Electronic Engineering.

Elena Verkhoturova, Irkutsk National Research Technical University

Research Department.

References

C. E. Patiño and G. F. M. de Souza, “Análisis de confiabilidad para herramientas de corte aplicado al proceso de taladrado,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 36, Mar. 2006. [Online]. Available: t.ly/6a14

F. Beltrán, E. Chávez, A. Favela, and R. F. Vásquez, “Active Perturbation Rejection in Motion Control of Milling Machine Tools,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 69, Oct-Dec. 2013. [Online]. Available: t.ly/LAk8

J. M. Arroyo, E. A. Patiño, D. A. Garzón, and C. J. Cortés,“Modelado del proceso de maquinado mediante el MEF y el uso de metamodelos con lógica difusa y regresión lineal,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 69, Oct-Dec. 2013. [Online]. Available: t.ly/9nsm

O. D. J. Copete and I. D. Arango, “Selective polishing method to increase precision in large format lightweight machine tools working with petrous material,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 90, Jan-Mar. 2019. [Online]. Available: https://doi.org/10.17533/udea.redin.n90a08

O. J. Zurita, V. C. D. Graci, and M. C. Capace, “Effect of surface hardness and roughness produced by turning on the torsion mechanical properties of annealed AISI 1020 steel,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 84, Jul-Sep. 2017. [Online]. Available: https://doi.org/10.17533/udea.redin.n984a07

G. Bejarano, J. Caicedo, and J. Muñoz, “Mechanical and tribological properties enhancement of heat treated AISI 4340 steel by using a TiN/TiAlN multilayer coating system,” Revista Facultad de Ingeniería, Universidad de Antioquia, no. 44, Apr-Jun. 2008. [Online]. Available: t.ly/WnzT

Z. Hessainia, A. Belbah, M. A. Yallese, T. Mabrouki, and J. F. Rigal, “On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations,” Measurement, vol. 46, no. 5, Jun. 2013. [Online]. Available: https://doi.org/10.1016/j.measurement.2012.12.016

M. H. Miguélez, L. Rubio, J. A. Loya, and J. Fernández, “Improvement of chatter stability in boring operations with passive vibration absorbers,” International Journal of Mechanical Sciences, vol. 52, no. 10, Oct. 2010. [Online]. Available: https://doi.org/10.1016/j.ijmecsci.2010.07.003

Y. Alammari, M. Sanati, T. Freiheit, and S. S. Park, “Investigation of Boring Bar Dynamics for Chatter Suppression,” Procedia Manufacturing, vol. 1, 2015. [Online]. Available: https://doi.org/10.1016/j.promfg.2015.09.059

J. C. Chen and W. L. Chen, “A tool breakage detection system using an accelerometer sensor,” Journal of Intelligent Manufacturing, vol. 10, Apr. 1999. [Online]. Available: https://doi.org/10.1023/A:1008980821787

L. M. D. Owsley, L. Atlas, and G. D. Bernard, “Self-organizing feature maps and hidden Markov models for machine-tool monitoring,” IEEE, vol. 45, no. 11, Nov. 1997. [Online]. Available: https://doi.org/10.1109/78.650105

R. E. Haber and A. Alique, “Intelligent process supervision for predicting tool wear in machining processes,” Mechatronics, vol. 13, no. 8-9, Oct. 2003. [Online]. Available: https://doi.org/10.1016/S0957-4158(03)00005-9

B. Sick, “On-Line and indirect tool wear monitoring in turning with Artificial Neural Networks: A review of more than a decade of research,” Mechanical Systems and Signal Processing, vol. 16, no. 4, Jul. 2002. [Online]. Available: https://doi.org/10.1006/mssp.2001.1460

N. A. Proskuryako, “Fuzzy Controllers in the Adaptive Control System of a CNC Lathe,” Russian Engineering Research, vol. 38, Apr. 26 2018. [Online]. Available: https://doi.org/10.3103/S1068798X18030188

Downloads

Published

2020-11-17

How to Cite

Ovsyannikov, V., Nekrasov, R., Putilova, U., Il’yaschenko, D., & Verkhoturova, E. (2020). On the issue of automatic form accuracy during processing on CNC machines. Revista Facultad De Ingeniería Universidad De Antioquia, (103), 88–95. https://doi.org/10.17533/udea.redin.20201111