Use of rice husk as hot tipping on steel casting parts
DOI:
https://doi.org/10.17533/udea.redin.20240621Keywords:
rice husk, feeding aids, exothermic materials, isothermic materials, metallic efficiencyAbstract
The use of feeding aids in the foundry process has become widespread globally recent decades, leading to increased efficiency. This article examines the characterization of rice husks, their ashes, and their positive impact as hot topping on the efficiency of open risers in casting cylindrical parts made of AISI 1045 steel. The rice husks were analyzed through X-Ray Diffraction test, Thermal-Gravimetric Analysis, and Differential Thermal-Gravimetric Analysis, while the ashes were characterized using X-Ray Diffraction. The analyzed rice husks were found to contain cellulose and low crystallinity silicon, whereas the ashes primarily consisted of cristobalite and tridymite. It was observed that the thermal decomposition of rice husks occurs in three stages, with approximately 81% of the mass lost during their combustion as hot topping on liquid steel. The location of cavities contraction in the risers of casting parts was made through longitudinal cut of the part-riser system. The increase in the rice husks topping layer thickness positively influences the concentration of these cavities on the upper surface and enhances the feeder's efficiency.
Downloads
References
R. Wlodawer, Directional Solidification of Steel Castings, first English edition ed. Pergamon Press, 1966.
S. Dodik-Pelja, “Optimized feeding systems,” Foundry Management & Technology, Mar. 2021. [Online]. Available: https://tinyurl.com/yzumwn3m
R. W. Ruddle, Risering of steel castings. Published by FOSeCO, 1979.
W. C. Miller, “Insulating refractory fiber composition and articles for use in casting ferrous metals,” U.S. Patent US4 014 704, Mar. 29, 1977.
H. Twardowska et al., “Exothermic sleeve compositions containing aluminum dross,” U.S. Patent US6 360 808B1, Mar., 2002.
A. Al-Shafe and H. M. Azadur-Rahman, “Development of small scale low cost insulating riser sleeves from scraps and by products of an existing foundry industry,” International Journal of Innovative Science and Modern Engineering (IJISME), vol. 3, no. 11, Oct. 2015. [Online]. Available: https://tinyurl.com/5eryw9yk
T. J. Williams, R. A. Hardin, and C. Beckermann, “Thermophysical properties and performance of riser sleeves for steel castings,” Proceedings of the 69th Technical and Operating Conference, vol. 10, no. 4, Aug. 2016. [Online]. Available: https://doi.org/10.1007/s40962-016-0041-7
S. A. Fischer, L. A. Horvath, R. E. Showman, and U. Skerdi, “The evolution of high performance feeding aids to improve casting quality,” International Foundry Research, vol. 64, no. 4, 2012.
R. Aufderheide, “Hot topping techniques for riser feeding consistency,” Foundry management & technology, vol. 137, no. 1, 2009.
FOSeCO, Foseco Ferrous Foundryman’s Handbook, J. R. Brown, Ed., 2000.
J. Vargas, P. Alvarado, J. Vega-Baudrit, and M. Porras, “Caracterización del subproducto cascarillas de arroz en búsqueda de posibles aplicaciones como materia prima en procesos,”Revista Científica, vol. 23, no. 1, 2013. [Online]. Available: https://doi.org/10.54495/Rev.Cientifica.v23i1.115
P. A. Olivier, “The rice hull house,” 2011. [Online]. Available: https://tinyurl.com/mrs5v7my
A. Valverde, B. Sarria, and J. Monteagudo, “Análisis comparativo de ñas características fisicoquímicas de la cascarilla de arroz,” Scientia et Technica, vol. 13, no. 37, Dec. 2007. [Online]. Available: http://www.redalyc.org/comocitar.oa?id=84903743
B. Fernández, “Se debe verificar aerodinámica de la combustión con doble turbolizador estático,” 2004. [Online]. Available: https://repositorio.ug.edu.ec›bitstream›redug
A. D. Pita, “Elaboración de elementos constructivos a partir de la cáscara de arroz,” Facultad Agroforestal, Universidad de Pinar del Río “Hermanos Saíz Montes de Oca, 2011. [Online]. Available: https://tinyurl.com/yck93a4m
A. Prada and C. E. Cortés, “La descomposición térmica de la cascarilla de arroz: una alternativa de aprovechamiento integral,” Revista Orinoquia, vol. 14, no. 1, Dec. 2010. [Online]. Available: http://www.scielo.org.co/pdf/rori/v14s1/v14s1a13.pdf
L. Quiang, Y. Xu-lai, and Z. Xi-feng, “Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk,” Journal of Analytical and Applied Pyrolysis, vol. 82, no. 2, Jul. 2008. [Online]. Available: https://doi.org/10.1016/j.jaap.2008.03.003
W. Purwadi, D. Idamayanti, B. Bandanadjaja, M. Zanet, and M. R. Gorbyandi-Nadi, “The thickness effect of exothermic sleeve made from rice husk on its performance as a riser in steel casting,” International Journal of Emerging Trends in Engineering Research, vol. 8, no. 8, Aug. 2020. [Online]. Available: https://doi.org/10.30534/ijeter/2020/115882020
J. S. Lim, Z. A. Manan, S. R. Wan-Alwi, and H. Hashim, “A review on utilisation of biomass from rice industry as a source of renewable energy,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5, Jun. 2012. [Online]. Available: https://doi.org/10.1016/j.rser.2012.02.051
D. Idamayanti, W. Purwadi, B. Bandanadjaja, and R. Triadji, “Rice husk waste as an exothermic material for a riser sleeve for steel casting,” International Journal of Technology, vol. 11, no. 1, Jan. 2020. [Online]. Available: https://doi.org/10.14716/ijtech.v11i1.2544
Z. Ignaszak, P. Popielarski, and J. Ciura, “Heat source description of iso-exothermic sleeves with the use of continuous function,” Archives of Foundry, vol. 5, no. 15, 2005. [Online]. Available: https://tinyurl.com/2c674c7b
P. C. Kapur, “Thermal insulations from rice husk ash, an agricultural waste,” Ceramurgia International, vol. 6, no. 2, Apr-May. 1980. [Online]. Available: https://doi.org/10.1016/0390-5519(80)90045-9
P. Unrean, B. C. Lai-Fui, E. Rianawati, and M. Acda, “Comparative techno-economic assessment and environmental impacts of rice husk-to-fuel conversion technologies,” Energy, vol. 151, May. 2018. [Online]. Available: https://doi.org/10.1016/j.energy.2018.03.112
J. C. Cruz-Pérez, J. E. Gónzalez-Ruiz, and L. Perdomo-González, “Valoración del uso de la cáscara de arroz como material termoaislante en la fundición de piezas de acero,” Minería y Geología, vol. 36, no. 4, Dec. 2020. [Online]. Available: http://ref.scielo.org/djcztd
S. Haryati, R. Mohadi, and K. Syah, “Insulation material from rice husk granule,” Chemical Engineering Transactions, vol. 56, Mar. 2017. [Online]. Available: https://doi.org/10.3303/CET1756096
O. Cifuentes et al., “Se debe verificar diseño de un incinerador de cascarilla de arroz para el molino san joaquín,” Universidad de Ibagué, 2000.
S. Miati, S. Dey, S. Purakayastha, and B. Ghosh, “Physical and thermochemical characterization of rice husk char as a potential biomass energy source,” Bioresource Technology, vol. 97, no. 16, Nov. 2006. [Online]. Available: https://doi.org/10.1016/j.biortech.2005.10.005
X. Wang, Z. Lu, L. Jia, and J. Chen, “Physical properties and pyrolysis characteristics of rice husks in different atmosphere,” Results in Physics, vol. 6, Sep. 2016. [Online]. Available: https://doi.org/10.1016/j.rinp.2016.09.011
S. Tiwari and M. K. Pradhan, “Effect of rice husk ash on properties of aluminium alloys: A review,” Materials Today: Proceedings, vol. 4, no. 2, Apr. 2017. [Online]. Available: https://doi.org/10.1016/j.matpr.2017.01.049
C. A. Arcos, D. Macíaz-Pinto, and J. E. Rodríguez-Paéz, “La cascarilla de arroz como fuente de sio2,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 41, Sep. 2007. [Online]. Available: https://doi.org/10.17533/udea.redin.19012
S. Chandrasekhar, P. N. Pramada, and J. Majeed, “Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash,” Journal of Materials Science a, vol. 41, Dec. 2006. [Online]. Available: https://doi.org/10.1007/s10853-006-0859-0
J. D. Martínez-Ángel, T. G. Pineda-Vásquez, J. P. López-Zapata, and M. Betancur-Vélez, “Experimentos de combustión con cascarilla de arroz en lecho fluidizado para la producción de ceniza rica en sílice,” Feb. 2011. [Online]. Available: https://doi.org/10.17533/udea.redin.14925
Manufacturing Technology, 4th ed. USA: Tata McGraw-Hill Education, 2013.
C. M. Jarre-Castro, R. A. Puig-Martínez, C. Zamora-Ledezma, and E. Zamora-Ledezmar, “Caracterización preliminar de la ceniza de cáscara de arroz de la provincia manabí, ecuador, para su empleo en hormigones,” Revista Técnica de la Facultad de Ingeniería, vol. 38, no. 1, 2018. [Online]. Available: https://www.redalyc.org/articulo.oa?id=605772532007
J. C. Cruz, “Empleo de la cáscara de arroz como material auxiliar en la fundición de piezas de acero al carbono,” M.S. thesis, Universidad Central “Marta Abreu” de Las Villas, santa clara, Cuba, 2009.
L. M. Contreras-Velásquez, I. Pereda-Reyes, and O. Romero-Romero, “Aprovechamiento energético de residuos arroceros por bio-conversión. caso de estudio cuba,” Tecnología Energética Generación, vol. 2, 2012. [Online]. Available: http://dx.doi.org/10.6036/ES1010
E. M. Manals-Cutiño, D. Salas-Tort, and M. Penedo-Medina, “Caracterización de la biomasa vegetal-cascarilla de café,” Tecnología Química, vol. 87, no. 8, Jan-Apr. 2018. [Online]. Available: http://ref.scielo.org/f77zpg
R. Jiménez-Borges, E. J. López-Bastida1, F. González-Pérez, and J. A. Curbelo-García, “Evaluación preliminar del potencial energético de diferentes biomasas en la provincia de cienfuegos,”Centro Azúcar, vol. 45, no. 2, Apr.-Jun. 2018. [Online]. Available: http://ref.scielo.org/zbr2z8
Y. H. Percival-Zhang and L. R. Lynd, “Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems,” Biomass to Biofuels, vol. 88, no. 7, Dec. 2004. [Online]. Available: https://doi.org/10.1002/bit.20282
S. H. Javed, S. Naveed, N. Feroze, M. Zafar, and M. Shafaq, “Crystal and amorphous silica from kmno4 treated and untreated rice husk,” Journal of Quality and Technology Management, vol. 6, no. 1, Jun. 2010. [Online]. Available: https://tinyurl.com/4nn22bz3
P. Deshmukh, J. Bhatt, D. Peshwe, and S. Pathak, “Determination of silica activity index and xrd, sem and eds studies of amorphous sio2 extracted from rice husk ash,” Transactions of the Indian Institute of Metals, vol. 65, no. 1, Dec. 2011. [Online]. Available: https://doi.org/10.1007/s12666-011-0071-z
S. El-Sayed, “Thermal decomposition, kinetics and combustion parameters determination for two different sizes of rice husk using tga,” Engineering in Agriculture, Environment and Food, vol. 12, no. 4, Oct. 2019. [Online]. Available: https://doi.org/10.1016/j.eaef.2019.08.002
S. Ceylan and Y. Topçu, “Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis,” Bioresource Technology, vol. 156, Mar. 2014. [Online]. Available: https://doi.org/10.1016/j.biortech.2014.01.040
M. M. Said, G. R. John, and C. F. Mhilu, “Thermal characteristics and kinetics of rice husk for pyrolysis process,” International Jornal of Renewable Energy Research, vol. 4, no. 2, Mar. 2014. [Online]. Available: https://tinyurl.com/s3e6mzmy
Q. Xu, K. Xu, X. Yao, J. Li, and L. Li, “Thermal decomposition characteristics of foundry sand for cast iron in nitrogen atmosphere,” Royal Society Open Science, vol. 5, no. 12, Dec. 2018. [Online]. Available: https://doi.org/10.1098/rsos.181091
A. Chakraverty, P. Mishra, and H. D. Banerjee, “Investigation of thermal decomposition of rice husk,” Thermochimica Acta, vol. 94, no. 2, Oct. 1985. [Online]. Available: https://doi.org/10.1016/0040-6031(85)85270-9
R. Sarkar and M. Acharya, “Sintered porous balls from rice husk for thermal insulation in iron and steel industries,” Ironmaking & Steelmaking, vol. 44, no. 9, Oct. 2017. [Online]. Available: https://doi.org/10.1080/03019233.2016.1226565
Foseco, “Measuring the thermal efficiency of feeding aids,” Foundry Practice, no. 205, Jun. 1982. [Online]. Available: https://tinyurl.com/3988ruey
L. Sun and K. Gong, “Silicon-based materials from rice husks and their applications,” Industrial & Engineering Chemistry Research, vol. 40, no. 25, Oct. 2001. [Online]. Available: https://doi.org/10.1021/ie010284b
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.