ADM1 applications for a hybrid up-flow anaerobic sludge-filter bed reactor performance and for a batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge

Authors

  • Iván Ramírez University of Quindio

DOI:

https://doi.org/10.17533/udea.redin.14227

Keywords:

modeling, ADM1, inhibition, rate-limiting step, waste activity sludge, UASFB, thermophilic, thermal pretreatment, anaerobic digestion

Abstract

The anaerobic digestion process comprises a whole network of sequential and parallel reactions of biochemical and physicochemical nature. Anaerobic digesters often exhibit significant stability problems that may be avoibed only through appropriate control strategies. Such strategies require, in general, developing appropriate mathematical models aiming at understanding and optimizing the anaerobic digestion process, describing these reactions in structured manner. This work reviews the IWA Anaerobic Digestion Model  No. 1 (ADM1) and discusses two model applications: the anaerobic digestion of wine distillery vinasse as substrate in a 9.8-1 hybrid UASFB reactor and batch thermophilic anaerobic sigestion of thermally pretreated waste activated sludge. Predictions by the model using the parameters established in this study agreed well with the data measured under differents conditions tested. The resulting models explained the dynamic evolution of the main variables, in the liquid and gas phases.

|Abstract
= 162 veces | PDF (ESPAÑOL (ESPAÑA))
= 78 veces|

Downloads

Download data is not yet available.

Author Biography

Iván Ramírez, University of Quindio

Electronics Engineering Program. Faculty of Engineering. 

References

K. Boe. On-line monitoring and control of the biogas process. Thesis. Technical University of Denmark. Lyngby, Denmark. 2006. pp. 12-28.

J. Mata, P. Llabres. “Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives”. Bioresour. Technol. Vol. 74. 2000. pp. 3-16. DOI: https://doi.org/10.1016/S0960-8524(00)00023-7

V. Saravanam. T. Sreekrishman. “Modeling anaerobic biofilm reactors-A review”. Journal of Environmental Management. Vol. 81. 2006. pp. 1-18. DOI: https://doi.org/10.1016/j.jenvman.2005.10.002

J. Jhung, E. Choi. “A comparative study of UASB and anaerobic fixed film reactors with development of sludge granulation”. Water Res. Vol. 29. 1995. pp.271- 277. DOI: https://doi.org/10.1016/0043-1354(94)E0123-N

J. Reynolds, E. Colleran. Comparison of start-up and operation of anaerobic fixed bed and hybrid sludge bed reactors treating whey wastewater. Proceedings of the Preprints EWPCA conference on Anaerobic treatment a Grown-Up Technology. Amsterdam. 1986. pp. 515-531.

K. Lo, P. Liao, Y. Gao. “Anaerobic treatment of swine wastewater using hybrid UASB reactors”. Bioresour. Technol. Vol. 47. 1994. pp. 153-157. DOI: https://doi.org/10.1016/0960-8524(94)90114-7

D. Batstone, J. Keller, I. Angelidaki, S. Kalyuzhnyi, S. Pavlostathis, A. Rozzi, W. Sanders, H. Siegrist, V. Vavilin. Anaerobic Digestion Model No 1. Scientific and technical report 13. International Water Association (IWA). London, UK. 2002. pp. 4-40. DOI: https://doi.org/10.2166/wst.2002.0292

T. Jeong, G. Cha, S. Choi, C. Jeon. “Evaluation of methane production by the thermal pretreatment of waste activated sludge in an anaerobic digester”. Journal of Industrial and Engineering Chemistry. Vol. 13. 2007. pp. 558-563.

I. Angelidaki, B. Ahring. “Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature”. Water Research. Vol. 28. 1994. pp. 727-731. DOI: https://doi.org/10.1016/0043-1354(94)90153-8

K. Nickel, U. Neis. “Ultrasonic disintegration of biosolids for improved biodegradation”. Ultrasonics Sonochemistry. Vol. 14. 2007. pp. 450-455. DOI: https://doi.org/10.1016/j.ultsonch.2006.10.012

I. Ardic, F. Taner. “Effects of thermal, chemical and thermochemical pretreatments to increase biogas production yield of chicken manure”. Fresenius Environmental Bulletin. Vol. 14. 2005. pp. 373-380.

A. Davidsson, J. Wawrzynczyk, O. Norrlow, J. Jansen. “Strategies for enzyme dosing to enhance anaerobic digestion of sewage sludge”. Journal of Residuals Science & Technology. Vol. 4. 2007. pp. 1-7.

Y. Li, T. Noike. “Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment”. Water Science and Technology. Vol. 26. 1992. pp. 857- 866. DOI: https://doi.org/10.2166/wst.1992.0466

C. Bougrier, J. Delgenes, H. Carrere. “Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge”. Biochemical Engineering Journal. Vol. 34. 2007. pp. 20-27. DOI: https://doi.org/10.1016/j.bej.2006.11.013

M. Climent, I. Ferrer, M. Baeza, A. Artola, F. Vazquez, X. Font. “Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions”. Chemical Engineering Journal. Vol. 133. 2007. pp. 335-342. DOI: https://doi.org/10.1016/j.cej.2007.02.020

C. Bougrier, J. Delgenes, H. Carrere. “Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion”. Chemical Engineering Journal. Vol. 139. 2008. pp. 638-649. DOI: https://doi.org/10.1016/j.cej.2007.07.099

I. Skiadas, H. Gavala, J. Lu, B. Ahring. “Thermal pretreatment of primary and secondary sludge at 70 degrees C prior to anaerobic digestion”. Water Science and Technology. Vol. 52. 2005. pp. 161-166. DOI: https://doi.org/10.2166/wst.2005.0512

D, Jolis. “High-solids anaerobic digestion of municipal sludge pretreated by thermal hydrolysis”. Water Environment Research. Vol. 80. 2008. pp. 654-662. 19. DOI: https://doi.org/10.2175/193864708X267414

American Public Health Association (APHA), American Waste Works Association, Water Pollution Control Federation. Standard Methods for the Examination of Water and Wastewater. 18th ed. Washington DC, USA. 1992. pp. 380-425.

I. Ramirez, J. Steyer. “Modeling microbial diversity in anaerobic digestion”. Water Sci. Technol. Vol. 57. 2008. pp. 265-270. DOI: https://doi.org/10.2166/wst.2008.055

O. Lowry, N. Rosebrough, A. Fau, R. Randall. “Protein measurement with the Folin reagent”. Journal of Biological Chemistry. Vol. 193. 1951. pp. 265-275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

R. Dreywood. “Qualitative test for carbohydrate material”. Industrial and Engineering Chemistry Analytical Edition. Vol. 18. 1946. pp. 499-504. DOI: https://doi.org/10.1021/i560156a015

W. Parker. “Application of the ADM1 model to advanced anaerobic digestion”. Bioresour. Technol. Vol. 96. 2005. pp. 1832-1842. DOI: https://doi.org/10.1016/j.biortech.2005.01.022

S. Pavlostathis, E. Giraldo. “Kinetics of anaerobic treatment: a critical review”. Critical Reviews in Environmental Control. Vol. 21. 1991. pp. 411-490. DOI: https://doi.org/10.1080/10643389109388424

J. Bryers. “Structures modeling of the anaerobic digestion of biomass particulate”. Biotechnology and Bioengineering. Vol. 27. 1985. pp. 638-649. DOI: https://doi.org/10.1002/bit.260270514

J. Mata. “A simulation study of a continuous two phase dry digestion system”. Biotechnology and Bioengineering. Vol. 34. 1989. pp. 609-616. DOI: https://doi.org/10.1002/bit.260340505

V. Vavilin, B. Fernandez, J. Palatsi, X. Flotats. “Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview”. Waste Management. Vol. 28. 2008. pp. 941-953. DOI: https://doi.org/10.1016/j.wasman.2007.03.028

Y. Chen, S. Jiang, H. Yuan, Q. Zhou, G. Gu. “Hydrolysis and acidification of waste activated sludge at different pHs”. Water Research. Vol. 41. 2008. pp. 683-689. DOI: https://doi.org/10.1016/j.watres.2006.07.030

D. Hill, C. Barth, C. “A dynamic model for simulation of animal waste digestion”. Journal of Water Pollution Control Federation. Vol. 49. 1977. pp. 2129-2143.

Published

2013-01-27

How to Cite

Ramírez, I. (2013). ADM1 applications for a hybrid up-flow anaerobic sludge-filter bed reactor performance and for a batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Revista Facultad De Ingeniería Universidad De Antioquia, (65), 167–179. https://doi.org/10.17533/udea.redin.14227