Estimación del balance de Nitrógeno en un humedal construido subsuperficial plantado con Heliconia psittacorum para el tratamiento de aguas residuales domésticas
DOI:
https://doi.org/10.17533/udea.redin.14656Palabras clave:
balance de nitrógeno, desnitrificación, eliminación de nitrógeno, Heliconia psittacorum, humedal construido, asimilación por la plantaResumen
La influencia de la vegetación (Heliconia psittacorum) y el principal mecanismo de eliminación de nitrógeno en un humedal construido de flujo subsuperficial (HFSS) fueron estudiados por la aplicación de un balance de N. Para ésto se construyeron seis unidades de HFSS a escala de laboratorio (microcosmos) que incluyeron lechos de grava plantados con Heliconia sp. y sin plantar (controles), sometidos a una carga de 5,68 g N m-2 d-1 y un tiempo nominal de retención de 1,0 día. Los resultados indicaron una mayor eficiencia de eliminación de la carga de N en los microcosmos plantados (29,6%) comparado con los sin plantar (24,3%). El balance de masas indicó que el principal mecanismo de eliminación de N fue la nitrificación/desnitrificación al eliminar el 66,7 y 69,7% del N eliminado en los microcosmos plantados y sin plantar, respectivamente. La acumulación en el medio de soporte eliminó el 21,4 y 22,0% del N, respectivamente. Mientras que una pequeña asimilación del N por la Heliconia sp. fue establecida (0,6%). Pese a la baja asimilación directa de N por parte de la planta, fue evidente que éstas contribuyeron indirectamente a la eliminación de N en los microcosmos plantados vía latranslocación de oxígeno atmosférico y el ensamblaje de una comunidad microbiana más diversa en la rizósfera.Descargas
Citas
Water Environment Federation. Natural Systems for Wastewater Treatment. Alexandria. Virginia. MOP FD-(16). 1998. pp. 127-145.
C. H. Sim, M. K. Yusoff, B. Shutes, S. C. Ho, M. Mansor. “Nutrient removal in a pilot and full scale constructed wetland, Putrajaya city, Malaysia”. Environmental Management. Vol. 88. 2008. pp. 307- 317. DOI: https://doi.org/10.1016/j.jenvman.2007.03.011
G. A. Moshiri. Constructed Wetlands for Water Quality Improvement. Lewis Publishers. Boca Raton. Florida. 1993. pp. 132.
L. Yang, H. T. Chang, M. T. Lo Huang. “Nutrient removal in gravel – and soil – based wetland microcosms with and without vegetation”. Ecological Engineering. Vol. 18. 2001. pp. 91-105. DOI: https://doi.org/10.1016/S0925-8574(01)00068-4
A. Wießner, U. Kappelmeyer, P. Kuschk, M. Kästner. “Influence of redox condition dynamic on the removal efficiency of a laboratory-scale constructed wetland”. Water Research. Vol. 39. 2005. pp. 248-256. DOI: https://doi.org/10.1016/j.watres.2004.08.032
S. Teiter, Ü. Mander. “Emission of N2O, N2, CH4, and CO2 from constructed wetlands for wastewater treatment and from riparian buffer zones”. Ecological Engineering. Vol. 25. 2005. pp. 528-541. DOI: https://doi.org/10.1016/j.ecoleng.2005.07.011
M. A. Belmont, C. D. Metcalfe. “Feasibility of using ornamental plants (Zantedeschia aethiopica) in subsurface flow treatment wetlands to remove nitrogen, chemical oxygen demand and nonylphenol ethoxylate surfactants a laboratory-scale study”. Ecological Engineering. Vol. 21. 2003. pp. 233-247. DOI: https://doi.org/10.1016/j.ecoleng.2003.10.003
D. Konnerup, T. Koottatep, H. Brix. “Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia”. Ecological Engineering. Vol. 35. 2009. pp. 248-257. DOI: https://doi.org/10.1016/j.ecoleng.2008.04.018
P. F. Breen. “A mass balance method for assessing the potential of artificial wetlands for wastewater treatment”. Water Research. Vol. 24. 1990. pp. 689-697. DOI: https://doi.org/10.1016/0043-1354(90)90024-Z
A. F. M. Meuleman, R. Logtestijn, G. B. J. Rijs, J. T. A. Verhoeven. “Water and mass budgets of a vertical-flow constructed wetland used for wastewater treatment”. Ecological Engineering. 20. 2003. pp. 31-44. DOI: https://doi.org/10.1016/S0925-8574(03)00002-8
A. K. C. Chung, Y. Wu, N. F. Y. Tam, M. H. Wong. “Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater”. Ecological Engineering. Vol. 32. 2008. pp. 81-89. DOI: https://doi.org/10.1016/j.ecoleng.2007.09.007
S. Zhou, M. Hosomi. “Nitrogen transformations and balance in a constructed wetland for nutrient-polluted river water treatment using forage rice in Japan”. Ecological Engineering. Vol. 32. 2008. pp. 147-155. DOI: https://doi.org/10.1016/j.ecoleng.2007.10.004
U. Kappelmeyer, A. Wießner, P. Kuschk, M. Kästner. “Operation of a Universal Test Unit for Planted Soil Filters - Planted Fixed Bed Reactor”. Engineering in Life Sciences. Vol. 2. 2002. pp. 311-315. DOI: https://doi.org/10.1002/1618-2863(20021008)2:10<311::AID-ELSC311>3.0.CO;2-9
APHA, AWWA, WPCF. Standard Methods for the Examination of Water and Wastewater. 17th. ed. Ed.
Ediciones Díaz de Santos S.A. Madrid. España. 2005. pp. 189-263.
T. Yoshinari, R. Hynes, R. Knowles. “Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil”. Soil Biology and Biochemistry. Vol. 9. 1977. pp. 177-183. DOI: https://doi.org/10.1016/0038-0717(77)90072-4
Z. Zhang, Z. Rengel, K. Meney. “Interactive effects of nitrogen and phosphorus loadings on nutrient removal from simulated wastewater using Schoenoplectus validus in wetland microcosms”. Chemosphere. Vol. 72. 2008. pp. 1823-1828. DOI: https://doi.org/10.1016/j.chemosphere.2008.05.014
N. Gottschall, C. Boutin, A. Crolla, C. Kinsley, P. Champagne. “The role of plants in the removal of nutrient at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada”. Ecological Engineering. Vol. 29. 2007. pp. 154-163. DOI: https://doi.org/10.1016/j.ecoleng.2006.06.004
R. H. Kadlec, C. C. Tanner, V. M. Hally, M. M. Gibbs. “Nitrogen spiraling in subsurface-flow constructed wetlands: Implications for treatment response”. Ecological Engineering. Vol. 25. 2005. pp. 365-381. DOI: https://doi.org/10.1016/j.ecoleng.2005.06.009
M. Greenway. “Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia”. Water Science Technology. Vol. 48. 2003. pp. 121-128. DOI: https://doi.org/10.2166/wst.2003.0101
L. Vojtíšková, E. Munzarová, O. Votrubová, A. Říhová, B. Juřicová. “Growth and biomass allocation of sweet flag (Acorus calamus L.) under different nutrient conditions”. Hydrobiology. Vol. 518. 2004. pp. 9-22. DOI: https://doi.org/10.1023/B:HYDR.0000025052.81373.f3
J. Vymazal. “The use constructed wetlands with horizontal sub-surface flow for various types of wastewater”. Ecological Engineering. Vol. 35. 2009. pp. 1-17. DOI: https://doi.org/10.1016/j.ecoleng.2008.08.016
F. Ye, Y. Li. “Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities”. Ecological Engineering. Vol. 35. 2009. pp. 1043-1050. DOI: https://doi.org/10.1016/j.ecoleng.2009.03.009
J. Coleman, K. Hench, K. Garbutt, A. Sexstone, G. Bissonnette, J. Skousen. “Treatment of domestic wastewater by three plant species in constructed wetlands”. Water Air Soil Pollut. Vol. 128. 2001. pp. 283-295. DOI: https://doi.org/10.1023/A:1010336703606
P. E. Lim, T. F. Wong, D. V. Lim. “Oxygen demand, nitrogen and copper removal by free-water-surface and subsurface-flow constructed wetlands under tropical conditions”. Environment International. Vol. 26. 2001. pp. 425-431. DOI: https://doi.org/10.1016/S0160-4120(01)00023-X
C. S. Akratos, V.A.Tsihrintzis. “Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands”. Ecological Engineering. Vol. 29. 2007. pp. 173-191. DOI: https://doi.org/10.1016/j.ecoleng.2006.06.013
J. Vymazal. “Removal of nutrients in various types of constructed wetlands”. Science of the
Total Environment. Vol. 380. 2007. pp. 48-65. DOI: https://doi.org/10.1016/j.scitotenv.2006.09.014
T. Picek, H. Čížĸová, J. Dušek. “Greenhouse gas emissions from a constructed wetland-Plants as important sources of carbon”. Ecological Engineering. Vol. 31. 2007. pp. 98-106. DOI: https://doi.org/10.1016/j.ecoleng.2007.06.008
J. C. Akunna, C. Bizeau, R. Moletta. “Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol”. Water Research. Vol. 27. 1993. pp. 1303-1312. DOI: https://doi.org/10.1016/0043-1354(93)90217-6
H. Constantin, M. Fick, “Influence of C-sources on the denitrification rate of high-nitrate concentrated industrial wastewater”. Water Research. Vol. 31. 1997. pp. 583-589. DOI: https://doi.org/10.1016/S0043-1354(96)00268-0
P. Pitter. Hydrochemistry. Ed. VSCHT, Praha, Czech Republic (inczech). 1999. pp. 45-75.
U. Stottmeister, A. Wießner, P. Kuschk, U. Kappelmeyer, M. Kästner, O. Bederski, R. Müller, H. Moormann. “Effects of plants and microorganisms in constructed wetlands for wastewater treatment”. Biotechnology Advances. Vol. 22. 2003. pp. 93-117. DOI: https://doi.org/10.1016/j.biotechadv.2003.08.010
Ch. Münch, P, Kuschk, I. Röske. “Root stimulated nitrogen removal – only effect or important for the water treatment?”. Water Science and Technology. Vol. 51. 2005. pp. 185-192. DOI: https://doi.org/10.2166/wst.2005.0316
V. Sawaittayothin, C. Polprasert. “Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate”. Bioresource Technology. 98. 2007. pp. 565-570. DOI: https://doi.org/10.1016/j.biortech.2006.02.002
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista Facultad de Ingeniería
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.