Un nuevo algoritmo para la integración cuasi-singular en el Método de Elementos de Contorno tridimensional aplicado a elementos de pared delgada

Autores/as

  • Marco Antonio González De León Universidad Simón Bolívar
  • Luiz Carlos Wrobel Universidad Brunel
  • Manuel del Jesús Martinez Universidad Central de Venezuela

DOI:

https://doi.org/10.17533/udea.redin.17960

Palabras clave:

MEC, placas, carcasas, integración numérica, transformación polinómica

Resumen

La  exactitud  del  Método  de  Elementos  de  Contorno  (MEC)  depende  fuertemente  de  una  evaluación  precisa  de  las  integrales  de  contorno.  En  estructuras de pared delgada, algunos puntos de colocación pueden estar muy cerca  de  elementos  de  integración,  generando  integrales  cuasi-singulares  que requieren el uso de técnicas especiales de integración numérica. En este trabajo, se presenta un algoritmo efectivo para la integración cuasi-singular en  el  MEC  aplicado  a  estructuras  de  pared  delgada  en  tres  dimensiones.  El  algoritmo  se  basa  en  una  combinación  de  la  técnica  de  transformación  de  variables  de  Telles  y  la  cuadratura  de  Gauss  adaptativo  para  mejorar  la  precisión de la integración y para disminuir el tiempo de cálculo. La selección de  parámetros  para  el  algoritmo  depende  de  la  relación  entre  la  distancia  desde  el  punto  de  colocación  al  elemento  de  integración  y  una  longitud  de  referencia  del  elemento.  Como  ejemplo,  el  algoritmo  propuesto  se  aplica  a  una placa sometida a carga uniaxial y a un cilindro tubular a presión interna, ambos  de  pared  delgada.  Los  resultados  obtenidos  están  en  concordancia  con  los  resultados  teóricos  y  la  reducción  de  los  tiempos  de  integración  es  significativa.

|Resumen
= 95 veces | PDF (ENGLISH)
= 64 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Marco Antonio González De León, Universidad Simón Bolívar

Departamento de Mecánica.

Luiz Carlos Wrobel, Universidad Brunel

Profesor, Subdirector de Escuela - Investigación. Escuela de Ingeniería y Diseño.

Manuel del Jesús Martinez, Universidad Central de Venezuela

Profesor Titular de la Escuela de Ingeniería Mecánica. Director de Postgrado de la Facultad de Ingeniería.

Citas

L. Wrobel, M. Aliabadi. The Boundary Element Method. 1st ed. Ed. John Wiley & Sons. New York, USA. 2002. pp. 491-523.

A. Becker. Boundary Element Method in Engineering: A Complete Course. 1st ed. Ed. McGraw Hill. London, UK. 1992. pp. 1-14.

A. Zehnderand, M. Viz. “Fracture mechanics of thin plates and shells under combined membrane, bending and twisting loads”. Applied Mechanics Reviews. Vol. 58. 2005. pp. 37-48. DOI: https://doi.org/10.1115/1.1828049

C. Providakis, D. Beskos. “Dynamic analysis of plates by boundary elements”. Applied Mechanics Reviews. Vol. 52. 1999. pp. 213-236. DOI: https://doi.org/10.1115/1.3098936

Y. Liu. “Analysis of shell-like structures by the Boundary Element Method based on 3-D elasticity: formulation and verification”. International Journal for Numerical Methods in Engineering. Vol. 41. 1998. pp. 541-558. DOI: https://doi.org/10.1002/(SICI)1097-0207(19980215)41:3<541::AID-NME298>3.0.CO;2-K

J. Lachat, J. Watson. “Effective numerical treatment of Boundary Integral Equations: A formulation for threedimensional elastostatics”. International Journal for Numerical Methods in Engineering. Vol. 10. 1976. pp. 991-1005. DOI: https://doi.org/10.1002/nme.1620100503

J. Telles. “A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals”. International Journal for Numerical Methods in Engineering. Vol. 24. 1987. pp. 959-973. DOI: https://doi.org/10.1002/nme.1620240509

W. Ye. “A new transformation technique for evaluating nearly singular integrals”. Computational Mechanics. Vol. 42. 2008. pp. 457-466. DOI: https://doi.org/10.1007/s00466-008-0262-6

Y. Gu, W. Chen, C. Zhang. “The sinh transformation for evaluating nearly singular boundary element integrals over high-order geometry elements”. Engineering Analysis with Boundary Elements. Vol. 37. 2013. pp. 301-308. DOI: https://doi.org/10.1016/j.enganabound.2012.11.011

P. Johnston, B. Johnston, D. Elliott. “Using the iterated sinh transformation to evaluate two dimensional nearly singular boundary element integrals”. Engineering Analysis with Boundary Elements. Vol. 37. 2013. pp. 708-718. DOI: https://doi.org/10.1016/j.enganabound.2013.01.013

B. Johnston, P. Johnston, D. Elliott. “A new method for the numerical evaluation of nearly singular integrals on triangular elements in the 3D boundary element method”. Journal of Computational and Applied Mathematics. Vol. 245. 2013. pp. 148-161. DOI: https://doi.org/10.1016/j.cam.2012.12.018

J. Rong, L. Wen, J. Xiao. “Efficiency improvement of the polar coordinate transformation for evaluating BEM singular integrals on curved elements”. Engineering Analysis with Boundary Elements. Vol. 38. 2014. pp. 83-93. DOI: https://doi.org/10.1016/j.enganabound.2013.10.014

Y. Zhang, X. Li, V. Sladek, J. Sladek, X. Gao. “Computation of nearly singular integrals in 3D BEM”. Engineering Analysis with Boundary Elements. Vol. 48. 2014. pp. 32-42. DOI: https://doi.org/10.1016/j.enganabound.2014.07.004

Y. Liu, D. Zhang, F. Rizzo. Nearly singular and hypersingular integrals in the Boundary Element Method. Boundary Elements XV, Proceedings of the 15th Int. Conf. on Boundary Elements. Massachusetts, USA. 1993. pp. 453-468.

S. Mukherjee, M. Chati, X. Shi. “Evaluation of nearly singular integrals in boundary element contour and node methods for three-dimensional linear elasticity”. International Journal of Solids and Structures. Vol. 37. 2000. pp. 7633-7654. DOI: https://doi.org/10.1016/S0020-7683(99)00302-9

Z. Niu, W. Wendland, X. Wang, H. Zhou. “A semianalytical algorithm for the evaluation of the nearly singular integrals in three-dimensional boundary element methods”. Computer Methods in Applied Mechanics and Engineering. Vol. 194. 2005. pp. 1057- 1074. DOI: https://doi.org/10.1016/j.cma.2004.06.024

H. Hosseinzadeh, M. Dehghan. “A simple and accurate scheme based on complex space C to calculate boundary integrals of 2D boundary elements method”. Computers & Mathematics with Applications. Vol. 68. 2014. pp. 531-542. DOI: https://doi.org/10.1016/j.camwa.2014.06.011

H. Ma, N. Kamiya. “A general algorithm for the numerical evaluation of nearly singular boundary integrals of various orders for two- and threedimensional elasticity”. Computational Mechanics. Vol. 29. 2002. pp. 277-288. DOI: https://doi.org/10.1007/s00466-002-0340-0

G. Xie, J. Zhang, X. Qin, G. Li. “New variable transformations for evaluating nearly singular integrals in 2D boundary element method”. Engineering Analysis with Boundary Elements. Vol. 35. 2011. pp. 811-817. DOI: https://doi.org/10.1016/j.enganabound.2011.01.009

G. Xie, F. Zhou, J. Zhang, X. Zheng, C. Huang. “New variable transformations for evaluating nearly singular integrals in 3D boundary element method”. Engineering Analysis with Boundary Elements. Vol. 37. 2013. pp. 1169-1178 DOI: https://doi.org/10.1016/j.enganabound.2013.05.005

Z. Niu, C. Cheng, H. Zhou, Z. Hu. “Analytic formulations for calculating nearly singular integrals in two-dimensional BEM”. Engineering Analysis with Boundary Elements. Vol. 31. 2007. pp. 949-964. DOI: https://doi.org/10.1016/j.enganabound.2007.05.001

F. Araújo, K. Silva, J. Telles. “Generic domain decomposition and iterative solvers for 3D BEM problems”. International Journal for Numerical Methods in Engineering. Vol. 68. 2006. pp. 448-472. DOI: https://doi.org/10.1002/nme.1719

H. Li, G. Han, H. Mang. “A new method for evaluating for evaluating singular integrals in stress analysis of solids by the direct boundary element method”. International Journal for Numerical Methods in Engineering. Vol. 21. 1985. pp. 2071–2098. DOI: https://doi.org/10.1002/nme.1620211109

R. Rigby. Boundary Element Analysis of Cracks in Aerospace Structures. PhD Thesis, University of Portsmouth. Portsmouth, UK. 1995. pp. 25-32

X. Qin, J. Zhang, G. Xie, F. Zhou, G. Li. “A general algorithm for the numerical evaluation of nearly singular integrals on 3D boundary element”. Journal of Computational and Applied Mathematics. Vol. 235. 2011. pp. 4174-4186. DOI: https://doi.org/10.1016/j.cam.2011.03.012

S. Mukherjee. “Integral equation formulation for thin shells—revisited”. Engineering Analysis with Boundary Elements. Vol. 31. 2007. pp. 539-546. DOI: https://doi.org/10.1016/j.enganabound.2006.10.003

F. Araújo, K. Silva, J. Telles. “Application of a generic domain-decomposition strategy to solve shell-like problems through 3D BE models”. Communications in Numerical Methods in Engineering. Vol. 23. 2007. pp. 771-785. DOI: https://doi.org/10.1002/cnm.926

A. Frangi, M. Guiggiani. “Boundary element analysis of Kirchhoff plates with direct evaluation of hypersingular integrals”. International Journal for Numerical Methods in Engineering. Vol. 46. 1999. pp. 1845-1863. DOI: https://doi.org/10.1002/(SICI)1097-0207(19991220)46:11<1845::AID-NME747>3.0.CO;2-I

M. Guiggiani. “The evaluation of Cauchy principal value integrals in the boundary element method – A review”. Mathematical and Computer Modelling. Vol. 15. 1991. pp. 175-184. DOI: https://doi.org/10.1016/0895-7177(91)90063-D

D. Beskos. “Boundary element methods in dynamic analysis: Part II (1986-1996)”. Applied Mechanics Reviews. Vol. 50. 1997. pp. 149-197. DOI: https://doi.org/10.1115/1.3101695

N. Dowling. Mechanical Behavior of Materials. Engineering Methods for Deformation, Fracture, and Fatigue. 3rd ed. Ed. Prentice Hall. New Jersey, USA. 2007. pp. 785-786.

Descargas

Publicado

2015-02-18

Cómo citar

González De León, M. A., Wrobel, L. C., & Martinez, M. del J. (2015). Un nuevo algoritmo para la integración cuasi-singular en el Método de Elementos de Contorno tridimensional aplicado a elementos de pared delgada. Revista Facultad De Ingeniería Universidad De Antioquia, (74), 96–107. https://doi.org/10.17533/udea.redin.17960