Simulaciónes de dinámica molecular del comportamiento mecánico de la aleación Al80Ti15Ni5 nanocristalina y amorfa

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20201009

Palabras clave:

dinámica molecular, aleación nanocristalina, vidrio metálico, propiedades mecánicas

Resumen

Los clásicos mecanismos de deformación basados en defectos de los policristales metálicos no son adecuados para describir el comportamiento mecánico de los materiales metálicos vítreos y nanocristalinos. Su complejidad inherente crea un verdadero desafío para comprender sus complicados fenómenos físicos. El uso de la dinámica molecular (DM) se torna interesante permitiendo evaluar la relación entre la estructura atómica con las propiedades mecánicas. En el presente trabajo, simulaciones de DM fueran utilizadas para estudiar los mecanismos de deformación a nivel de nanoescala de la aleación Al80Ti15Ni5. Los resultados revelaron una dependencia significativa entre el módulo de Young y la estructura atómica. El tipo de estructura a escala atómica, nanocristalina o amorfa, gobierna los mecanismos dela deformación. Para la aleación nanocristalina, el deslizamiento y la difusión del contorno de grano parecen ser los procesos dominantes en la deformación.  Además, se observan emisiones de discordancias parciales en los contornos de grano.  En el material amorfo, las zonas de transformación por cizallamiento comienzan a formarse en el régimen elástico y se convierten en bandas de cizallamiento actuando como los principales mecanismos en el proceso de deformación.  Los resultados indican que las propiedades mecánicas de la estructura amorfa representan un caso límite inferior del nanocristal. Los módulos elásticos determinados en la aleación Al80Ti15Ni5 son muy bajos, por esta razón se evaluaron los efectos de los potenciales interatómicos unarios y ternarios para cada elemento.

|Resumen
= 1060 veces | HTML (ENGLISH)
= 0 veces| | PDF (ENGLISH)
= 634 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Alexandre Melhorance Barboza, Universidad del Estado de Río de Janeiro

Estudiante de Doctorado.

Ivan Napoleão Bastos, Universidad del Estado de Río de Janeiro

Doctorado en Ciencia e Ingenieria de los Materiales.

Luis César Rodríguez Aliaga, Universidad del Estado de Río de Janeiro

Profesor, Ciencia de los Materiales.

Citas

C. Koch, “Bulk behavior of nanostructured materials,” in Nanostructure science and technology, R. W. Siegel and et al, Ed. Dordrecht, Netherlands: Springer, 1999, pp. 93–111.

G. E. Dieter, Mechanical metallurgy, 3rd ed. Boston, USA: McGraw- Hill Education, 1986.

C. C. Koch, Nanostructured materials: Processing properties, and potential applications, 1st ed. Norwich, England: William Andrew, 2002.

S. Feng and et al, “Atomic structure of shear bands in cu64zr36 metallic glasses studied by molecular dynamics simulations,” Acta Mater., vol. 95, August 15 2015. [Online]. Available: https://doi.org/10.1016/j.actamat.2015.05.047

M. H. Cohen and D. Turnbull, “Metastability of amorphous structures,” Nature, vol. 203, no. 964, August 1 1964. [Online]. Available: https://doi.org/10.1038/203964a0

N. Mattern and et al, “Short-range order of Cu–Zr metallic glasses,” J. Alloys Compd, vol. 485, no. 1-2, October 19 2009. [Online]. Available: https://doi.org/10.1016/j.jallcom.2009.05.111

K. S. Siow, A. A. O. Tay, and P. Oruganti, “Mechanical properties of nanocrystalline copper and nickel,” Mater. Sci. Technol., vol. 20, no. 3, March 2004. [Online]. Available: https://doi.org/10.1179/026708304225010460

M. A. Meyers, A. Mishra, and D. J. Benson, “Mechanical properties of nanocrystalline materials,” Prog. Mater. Sci., vol. 51, no. 4, May 2006. [Online]. Available: https://doi.org/10.1016/j.pmatsci.2005.08.003

V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, “Deformation mechanism crossover and mechanical behavior in nanocrystalline materials,” Philos. Mag. Lett., vol. 83, no. 6, June 2003. [Online]. Available: https://doi.org/10.1080/09500830031000120891

T. R. Anantharaman and C. Suryanarayana, Rapidly solidified metals — A technological overview, 1st ed. Aedermannsdorf, CH: Trans Tech Pubn, 1987.

H. H. Liebermann, Rapidly solidified alloys: Processes, structures, properties, applications, 1st ed. New York, USA: CRC Press, 2003.

S. N. Aqida, L. H. Shah, S. Naher, and D. Brabazon, “Rapid solidification processing and bulk metallic glass casting,” Comprehensive Materials Processing, vol. 5, May 2014. [Online]. Available: https://doi.org/10.1016/B978-0-08-096532-1.00506-9

Z. Mahbooba and et al, “Additive manufacturing of an iron-based bulk metallic glass larger than the critical casting thickness,” Appl. Mater. Today, vol. 11, June 2018. [Online]. Available: https://doi.org/10.1016/j.apmt.2018.02.011

C. C. Koch, I. A. Ovid’ko, S. Seal, and S. Veprek, Structural nanocrystalline materials: Fundamentals and application, 1st ed. Cambridge, UK: Cambridge University Press, 2007.

A. Aronin and et al, “Nanocrystal formation in light metallic glasses at heating and deformation,” Rev. Adv. Mater. Sci., vol. 46, pp. 53–69, 2016.

C. Parra, D. Perea, and F. J. Bolivar, “Effect of cobalt content on non isothermal crystallization kinetics of Fe based amorphous alloys,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 95, 2020. [Online]. Available: https://doi.org/10.17533/10.17533/udea.redin.20190735

D. Hull and D. J. Bacon, Introduction to dislocations, 5th ed. Burlington, USA: Butterworth-Heinemann, 2011.

D. G. Morris, “The origins of strengthening in nanostructured metals and alloys,” Rev. de Metal., vol. 46, no. 2, April 10 2010. [Online]. Available: http://dx.doi.org/10.3989/revmetalm.1008

Y. T. Zhu and T. G. Langdon, “Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials,” Mater. Sci. Eng. A, vol. 409, no. 1-2, November 15 2005. [Online]. Available: https://doi.org/10.1016/j.msea.2005.05.111

M. Dao and L. Lu and R. J. Asaro and J. T. M. De Hosson and E. Ma, “Toward a quantitative understanding of mechanical behavior of nanocrystalline metals,” Acta Mater., vol. 55, no. 12, July 2007. [Online]. Available: https://doi.org/10.1016/j.actamat.2007.01.038

H. W. Song, S. R. Guo, and Z. Q. Hu, “A coherent polycrystal model for the inverse Hall-Petch relation in nanocrystalline materials,” Nanostruct. Mater., vol. 11, no. 2, March 1999. [Online]. Available: https://doi.org/10.1016/S0965-9773(99)00033-1

J. Schiøtz and F. D. Di Tolla and K. W. Jacobsen, “Softening of nanocrystalline metals at very small grain sizes,” Nature, vol. 391, February 5 1998. [Online]. Available: https://doi.org/10.1038/35328

H. V. Swygenhoven, A. Caro, and D. Farkas, “A molecular dynamics study of polycrystalline fcc metals at the nanoscale: Grain boundary structure and its influence on plastic deformation,” Mater. Sci. Eng. A, vol. 309-310, July 15 2001. [Online]. Available: https://doi.org/10.1016/S0921-5093(00)01794-9

J. Schiøtz and K. W. Jacobsen, “A maximum in the strength of nanocrystalline copper,” Science, vol. 301, no. 5638, September 5 2003. [Online]. Available: https://doi.org/10.1126/science.1086636

A. H. Chokshi and A. Rosen and J. Karch and H. Gleiter, “On the validity of the hall-petch relationship in nanocrystalline materials,” Scr. Metall., vol. 23, no. 10, October 1989. [Online]. Available: https://doi.org/10.1016/0036-9748(89)90342-6

M. Ke, S. A. Hackney, W. W. Milligan, and E. C. Aifantis, “Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films,” Nanostruct. Mat., vol. 5, no. 6, August 1995. [Online]. Available: https://doi.org/10.1016/0965-9773(95)00281-I

L. Wang and et al, “Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum,” Nat. Commun., vol. 5, no. 4402, July 2014. [Online]. Available: https://doi.org/10.1038/ncomms5402

R. J. Asaro and S. Suresh, “Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins,” Acta Mater., vol. 53, no. 12, July 2015. [Online]. Available: https://doi.org/10.1016/j.actamat.2005.03.047

G. Q. Guo, S. Y. Wu, and L. Yang, “Structural origin of the enhanced glass-forming ability induced by microalloying y in the ZrCuAl alloy,” Metals, vol. 6, no. 4, March 2016. [Online]. Available: https://doi.org/10.3390/met6040067

L. C. Rodríguez, C. Sánchez, I. N. B. L. V. Lima, and W. J. Botta, “Study of glass-forming on Cu60.0Zr32.5Ti7.5 alloy by molecular dynamics simulation,” Mat. Res., vol. 21, no. 2, December 21 2017. [Online]. Available: http://dx.doi.org/10.1590/1980-5373-mr-2017-0555

Y. Sun, A. Concustell, and A. L. Greer, “Thermomechanical processing of metallic glasses: Extending the range of the glassy state,” Nat. Rev. Mater, vol. 1, no. 9, June 7 2016. [Online]. Available: http://dx.doi.org/10.1038/natrevmats.2016.39

A. Wisitsorasak and P. G. Wolynes, “Dynamical theory of shear bands in structural glasses,” Nat. Rev. Mater, vol. 1, no. 9, June 7 2016. [Online]. Available: http://dx.doi.org/10.1038/natrevmats.2016.39

D. H. Kim, W. T. Kim, and D. H. Kim, “Formation and crystallization of Al–Ni-Ti amorphous alloys,” Mater. Sci. Eng. A, vol. 385, no. 1-2, November 15 2004. [Online]. Available: https://doi.org/10.1016/j.msea.2004.04.016

S. Erkoç and H. Oymak, “AlTiNi Ternary alloy clusters: Molecular dynamics simulations and density functional theory calculations,” J. Phys. Chem. B, vol. 385, no. 1-2, November 15 2004. [Online]. Available: https://doi.org/10.1016/j.msea.2004.04.016

S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comp. Phys., vol. 117, no. 1, March 1 1995. [Online]. Available: https://doi.org/10.1006/jcph.1995.1039

S. Frøseth, H. V. Swygenhoven, and P. M. Derlet, “Developing realistic grain boundary networks for use in molecular dynamics simulations,” Acta Mater., vol. 53, no. 18, October 2005. [Online]. Available: https://doi.org/10.1016/j.actamat.2005.06.032

L. C. R. Aliaga, L. V. Lima, G. M. B. Domingues, I. N. Bastos, and G. A. Evangelakis, “Experimental and molecular dynamics simulation study on the glass formation of Cu–Zr–Al alloys,” Mater. Res. Express, vol. 6, no. 4, October 2018. [Online]. Available: https://doi.org/10.1088/2053-1591/aaf97e

L. Ward, A. Agrawal, K. M. Flores, and W. Windl. (2012, Sep. 4) Rapid production of accurate embedded-atom method potentials for metal alloys. [Online]. Available: https://arxiv.org/abs/1209.0619

N. V. Chistyakova and T. M. Tran, “A study of the applicability of different types of interatomic potentials to compute elastic properties of metals with molecular dynamics methods,” AIP Conference Proceedings, vol. 1772, no. 1, 2016. [Online]. Available:https://doi.org/10.1063/1.4964599

M. S. Daw and M. I. Baskes, “Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals,” Phys. Rev. Lett., vol. 50, no. 17, April 25 1983. [Online]. Available: https://doi.org/10.1103/PhysRevLett.50.1285

A. P. Sutton and J. Chen, “Long-range finnis-sinclair potentials,” Philos. Mag. Lett., vol. 61, no. 3, 1990. [Online]. Available: https://doi.org/10.1080/09500839008206493

D. Riegner, “Molecular dynamics simulations of metallic glass formation and structure,” Ph. D. dissertation, The Ohio State University, Ohio, USA, 2016.

C. Safta and et al. (2014) Interatomic potentials models for Cu-Ni and Cu-Zr alloys. Sandia National Laboratories. [Online]. Available: https://bit.ly/35tJeB2

X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, “Misfit-energyincreasing dislocations in vapor-deposited CoFe/NiFe multilayers,” Phys. Rev. B, vol. 69, April 20 2004. [Online]. Available: https://doi.org/10.1103/PhysRevB.69.144113

Interatomic potentials repository. [National Institute of Standards and Technology (NIST)]. Accessed Sep. 20, 2020. [Online]. Available:https://www.ctcms.nist.gov/potentials/

G. P. Purja and Y. Mishin, “Development of an interatomic potential for the Ni-Al system,” Philos. Mag., vol. 89, no. 34-36, December 1 2009. [Online]. Available: https://doi.org/10.1080/14786430903258184

R. R. Zope and Y. Mishin, “Interatomic potentials for atomistic simulations of the Ti-Al system,” Phys. Rev. B, vol. 68, no. 2, June 2003. [Online]. Available: https://doi.org/10.1103/PhysRevB.68.024102

D. Faken and H. Jónsson, “Systematic analysis of local atomic structure combined with 3D computer graphics,” Comput. Mater. Sci., vol. 2, no. 2, March 1994. [Online]. Available: https://doi.org/10.1016/0927-0256(94)90109-0

H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, and E. Ma, “Atomic packing and short-to-medium range order in metallic glasses,” Nature, vol. 439, no. 7075, February 2006. [Online]. Available: https://doi.org/10.1038/nature04421

A. Stukowski, V. V. Bulatov, and A. Arsenlis, “Automated identification and indexing of dislocations in crystal interfaces,” Model. Simul. Mater. Sci. Eng., vol. 20, no. 8, December 2012. [Online]. Available: https://doi.org/10.1088/0965-0393/20/8/085007

A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO - the open visualization tool,” Simul. Mater. Sci. Eng., vol. 18, no. 1, January 2010. [Online]. Available: https://doi.org/10.1088/0965-0393/18/1/015012

J. F. Panzarino and T. J. Rupert, “Tracking microstructure of crystalline materials: A post-processing algorithm for atomistic simulations,” JOM, vol. 66, no. 3, March 2014. [Online]. Available: https://doi.org/10.1007/s11837-013-0831-9

J. Q. Guo and K. Ohtera, “Microstructures and mechanical properties of rapidly solidified high strength Al-Ni based alloys,” Acta Mater., vol. 46, no. 11, July 1 1998. [Online]. Available: https://doi.org/10.1016/S1359-6454(98)00065-2

K. J. Kurzydlowski, “Structure and properties of metals,” Acta Phys. Pol. A, vol. 96, no. 1, 1999. [Online]. Available: https://doi.org/10.12693/APhysPolA.96.69

W. Xu and L. P. Dáa, “Size dependence of elastic mechanical properties of nanocrystalline aluminum,” Mater. Sci. Eng. A, vol. 692, April 24 2017. [Online]. Available: https://doi.org/10.1016/j.msea.2017.03.065

J. Schiøtz and T. Vegge and F. D. Di Tolla and K. W. Jacobsen, “Atomicscale simulations of the mechanical deformation of nanocrystalline metals,” Phys. Rev. B, vol. 60, no. 17, 1999. [Online]. Available: https://doi.org/10.1103/PhysRevB.60.11971

T. Brink and K. Albe, “From metallic glasses to nanocrystals: Molecular dynamics simulations on the crossover from glass-like to grain-boundary-mediated deformation behavior,” Acta Mater., vol. 156, September 1 2018. [Online]. Available: https://doi.org/10.1016/j.actamat.2018.06.036

M. A. Haque and M. T. A. Saif, “Mechanical behavior of 30-50 nm thick aluminum films under uniaxial tension,” Scr. Mater., vol. 47, no. 12, December 2 2002. [Online]. Available: https://doi.org/10.1016/S1359-6462(02)00306-8

M. Muzyk, Z. Pakieła, and K. J. Kurzydlowski, “Generalized stacking fault energies of aluminum alloys–density functional theory calculations,” Metals, vol. 8, no. 10, October 18 2018. [Online]. Available: https://doi.org/10.3390/met8100823

J. Peterson and et al, “Quantifying amorphous and crystalline phase content with the atomic pair distribution function,” J. Appl. Crystallogr., vol. 46, no. 2, October 2012. [Online]. Available: https://doi.org/10.1107/S0021889812050595

W. Da, P. W. Wang, Y. F. Wang, M. F. Li, and L. Yang, “Inhomogeneity of free volumes in metallic glasses under tension,” Materials, vol. 12, no. 1, January 2019. [Online]. Available: https://doi.org/10.3390/ma12010098

S. P. Ju, H. H. Huang, and T. Y. Wu, “Investigation of the local structural rearrangement of Mg67Zn28Ca5 bulk metallic glasses during tensile deformation: A molecular dynamics study,” Comput. Mater. Sci., vol. 96, Part A, January 2015. [Online]. Available: https://doi.org/10.1016/j.commatsci.2014.09.005

D. Vollath, Nanoparticles – nanocomposites – nanomaterials: An introduction for beginners, 1st ed. Weinheim, DE: John Wiley & Sons, 2013.

Y. T. Zhu, X. Z. Liao, and X. W. Wu, “Deformation twinning in nanocrystalline materials,” Prog. Mater. Sci., vol. 57, no. 1, January 2012. [Online]. Available: https://doi.org/10.1016/j.pmatsci.2011.05.001

D. C. Hurley and et al, “Anisotropic elastic properties of nanocrystalline nickel thin films,” J. Mater. Res., vol. 20, no. 5, May 2005. [Online]. Available: https://doi.org/10.1557/JMR.2005.0146

K. Topolski, T. Brynk, and H. Garbacz, “Elastic modulus of nanocrystalline titanium evaluated by cyclic tensile method,” Arch. Civ. Mech. Eng., vol. 16, no. 4, September 2016. [Online]. Available: https://doi.org/10.1016/j.acme.2016.07.001

R. N. Stevens, “Grain-boundary sliding and diffusion creep in polycrystalline solids,” Philos. Mag., vol. 23, no. 182, 1971. [Online]. Available: https://doi.org/10.1080/14786437108216383

M. I. Mendelev, M. J. Kramer, C. A. Becker, and M. Asta,“Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu,” Philos. Mag., vol. 88, no. 12, April 2008. [Online]. Available: https://doi.org/10.1080/14786430802206482

M. I. Mendelev, T. L. Underwood, and G. J. Ackland, “Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium,” J. Chem. Phys., vol. 145, no. 15, October 2016. [Online]. Available: https://doi.org/10.1063/1.4964654

Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, “Interatomic potentials for monoatomic metals from experimental data and ab initio calculations,” Phys. Rev. B, vol. 59, no. 5, September 1998. [Online]. Available: https://doi.org/10.1103/PhysRevB.59.3393

Publicado

2020-10-27

Cómo citar

Melhorance Barboza, A., Napoleão Bastos, I., & Rodríguez Aliaga, L. C. (2020). Simulaciónes de dinámica molecular del comportamiento mecánico de la aleación Al80Ti15Ni5 nanocristalina y amorfa. Revista Facultad De Ingeniería Universidad De Antioquia, (103), 20–33. https://doi.org/10.17533/udea.redin.20201009