Evaluación de la susceptibilidad a deslizamientos en regiones con escasez de datos utilizando sensores remotos

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20231030

Palabras clave:

Región con datos escasos, Sensores Remotos, Susceptibilidad a deslizamientos, Terrenos tropicales y complejos, Regresión logística

Resumen

Los movimientos en masa provocados por lluvias son una de las causas más frecuentes de desastres naturales en terrenos montañosos. Sin embargo, las evaluaciones de susceptibilidad de movimientos en masa a menudo son limitadas debido a la escasez de observaciones confiables. Debido a esta falta de datos, especialmente en los países en desarrollo, los sensores remotos pueden ser usados para el análisis de la susceptibilidad de movimientos en masa. Este estudio presenta la aplicación de un modelo de regresión logística con datos de sensores remotos para evaluar la susceptibilidad a movimientos en masa en una cuenca en un territorio apartado en el norte de los Andes colombianos; donde el 18 de mayo de 2015 una tormenta desencadenó más de 40 movimientos en masa y un flujo de escombros asociado posteriormente.  La metodología aplicada se basa en herramientas de sensores remotos de libre acceso, ya que el área de estudio se considera una zona de escasez de datos. Los resultados muestran que las herramientas gratuitas de sensores remotos proporcionan suficiente información para ejecutar un modelo como regresión logística y lograr un primer acercamiento exitoso al mapa de susceptibilidad a movimientos en masa para territorios complejos como el área de estudio. Esto sugiere que la metodología propuesta podría implementarse en varias regiones con características similares basadas únicamente en información de libre acceso.

|Resumen
= 612 veces | PDF (ENGLISH)
= 94 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Edier Vicente Aristizábal-Giraldo, Universidad Nacional de Colombia

Profesor Asistente. Doctor con Énfasis en Recursos Hidráulicos. Departamento de Geociencias y Medio Ambiente

Diana Ruiz-Vásquez, Universidad EAFIT

Ingeniería Geológica

Citas

D. Alexander, “Vulnerability to landslides,” in Landslide Hazard and Risk, T. Glade, M. Anderson, and M. J. Crozier, Eds. John Wiley & Sons Ltd, 2005, pp. 175–198.

F. Nadim, O. Kjekstad, P. Peduzzi, C. Herold, and C. Jaedicke, “Global landslide and avalanche hotspots,” Landslides, vol. 3, no. 159, Feb. 08, 2006. [Online]. Available: https://doi.org/10.1007/s10346-006-0036-1.

R. S. A. KeithTurner, “Socioeconomic significance of landslides,” Transportation Reserch board- National Research Council, http://tinyurl.com/ymupkxw5, Tech. Rep. Special Report 247, Nov. 1988.

R. L. Schuster and L. M. Highland, “Socioeconomic and environmental impacts of landslides in the western hemisphere,” U.S. Geological Survey, no. 276, Feb. 08, 2001. [Online]. Available: https://doi.org/10.3133/ofr01276

M. Dilley, R. S. Chen, U. Deichmann, A. Lerner-Lam, and M. Arnold, Natural disaster hotspots: A Global Risk Analysis. Washington, D.C: The World Bank, 2005.

R. L. Schuster and R. W. Fleming, “Economic losses and fatalities due to landslides,” Environmental & Engineering Geoscience, vol. 11, no. 28, Feb. 01, 1986. [Online]. Available: https://doi.org/10.2113/gseegeosci.xxiii.1.11

D. Petley, “Global patterns of loss of life from landslides,” Geology, vol. 40, no. 10, Oct. 01, 2012. [Online]. Available: https://doi.org/10.1130/G33217.1

F. Guzzetti, S. Peruccacci, M. Rossi, and C. P. Stark, “Rainfall thresholds for the initiation of landslides in central and southern europe,” Meteorology and Atmospheric Physics, vol. 98, Jan. 30, 2007. [Online]. Available: https://doi.org/10.1007/s00703-007-0262-7

R. M. Iverson, “Landslide triggering by rain infiltration,” Water Resour Res, vol. 36, no. 7, Jul. 01, 2000. [Online]. Available: https://doi.org/10.1029/2000WR900090

J. L. Zêzere, R. M. Trigo, and I. F. Trigo, “Shallow and deep landslides induced by rainfall in the lisbon region (portugal): assessment of relationships with the north atlantic oscillation,” Natural Hazards and Earth System Sciences, vol. 5, no. 3, Apr. 18, 2005. [Online]. Available: https://doi.org/10.5194/nhess-5-331-2005

D. Petley, “The global occurrence of fatal landslides in 2007,” in International Conference on Management of Landslide Hazard in the Asia–Pacific Region. Japan Landslide Society, Tokio, Japan, 2007.

D. Guha-Sapir, P. Hoyois, P. Wallemacq, and R. Below, Annual Disaster Statistical Review 2016. Brussels, Belgium: Centre for Research on the Epidemiology of Disasters, 2016.

R. L. Schuster, D. A. Salcedo, and L. Valenzuela, “Driving commerce to the web—corporate intranets and the internet: Lines blur,” Catastrophic Landslides, vol. 15, Jan. 01, 2002. [Online]. Available: https://doi.org/10.1130/REG15-p1

S. A. Sepúlveda and D. N. Petley, “Regional trends and controlling factors of fatal landslides in latin america and the caribbean,” Natural Hazards and Earth System Sciences, vol. 15, no. 8, Aug. 06, 2015. [Online]. Available: https://doi.org/10.5194/nhess-15-1821-2015

D. J. Varnes, “Slope-stability problems of circum-pacific region as related to mineral and energy resources,” The AAPG/Datapages Combined Publications Database, Aug. 06, 1981. [Online]. Available: https://doi.org/10.5194/nhess-15-1821-2015

E. Muñoz, H. Martínez-Carvajal, J. Arévalo, and D. Alvira, “Quantification of the effect of precipitation as a triggering factor for landslides on the surroundings of medellín – colombia,” Natural Hazards and Earth System Sciences, vol. 81, no. 187, Oct. 2014. [Online]. Available: https://www.redalyc.org/articulo.oa?id=49632363015

H. Garcia-Delgado, D. N. Petley, M. A. Bermúdez, and S. A. Sepúlveda, “Fatal landslides in colombia (from historical times to 2020) and their socio-economic impacts,” Landslides, vol. 19, Mar. 21, 2022. [Online]. Available: https://doi.org/10.1007/s10346-022-01870-2

M. Garcia, “Eventos catastroficos del 13 de noviembre de 1985,” Boletin de Vias, vol. 15, no. 65, 1988.

D. S. Mileti, P. A. Bolton, G. Fernandez, and R. G. Updike, The Eruption of Nevado Del Ruiz Volcano Colombia, South America, November 13. Washington, DC: National Research Council, 1991.

B. Voight, “The 1985 nevado del ruiz volcano catastrophe: anatomy and retrospection,” Journal of Volcanology and Geothermal Research, vol. 44, no. 3, Dec. 30, 1990. [Online]. Available: https://doi.org/10.1016/0377-0273(90)90027-D

H. Tokuhiro and K. Sassa, “Landslide in villa tina,” Landslides of the World, 1999.

O. Service. Cruz roja Colombiana. [Online]. Available: http://tinyurl.com/5ejcv7vv

J. D. Graff, H. Charles-Romesburg, R. Ahmad, and J. P. McCalpin, “Producing landslide-susceptibility maps for regional planning in data-scarce regions,” Natural Hazards, vol. 64, Jul. 14, 2012. [Online]. Available: https://doi.org/10.1007/s11069-012-0267-5

G. Santa-Ramírez, J. Cuevas-González, Leal-Villamíl, and J. Muñoz-Ramos, “Correlation of morphometric variables for landslides in the combeima river basin, colombia,” Ingeniería y Ciencia, vol. 16, no. 31, Jun. 19, 2020. [Online]. Available: https://doi.org/10.17230/ingciencia.16.31.7

E. E. Brabb, “Innovative approaches to landslide hazard mapping,” in Proceedings of 4th International Symposium on Landslides, 1984, pp. 307–324.

S. G. C. SGC. (2015) Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa. Servicio Geológico Colombiano - SGC. [Online]. Available: http://hdl.handle.net/20.500.11762/19776

M. Cardinali, P. Reichenbach, F. Guzzetti, F. Ardizzone, G. Antonini, M. Galli, and et al., “A geomorphological approach to the estimation of landslide hazards and risks in umbria, central italy,” Natural Hazards and Earth System Sciences, vol. 2, no. 1/2, Jun. 30, 2002. [Online]. Available: https://doi.org/10.5194/nhess-2-57-2002

C. J. van Westen, R. Soeters, and K. Sijmons, “Digital geomorphological landslide hazard mapping of the alpago area, italy,” International journal of applied earth observation and geoinformation, vol. 2, no. 1, Aug. 01, 2002. [Online]. Available: https://doi.org/10.1016/S0303-2434(00)85026-6

Lineamientos técnicos para la elaboración de mapas de amenaza por movimientos en masa a escala municipal y rural, Servicio Geológico Colombiano, Bogotá, DC, 2013.

R. L. Baum, W. Z. Savage, and J. W. Godt, TRIGRS—A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0. U.S: Geological Survey Open-File Report, 2008.

R. Pack, D. Tarboton, and C. Goodwin, “The sinmap approach to terrain stability mapping,” in 8th Congress of the International Association of Engineering Geology, Vancouver, British Columbia, Canada, 1998, pp. 09–21.

R. J. Marin, M. F. Velásquez, and O. Sánchez, “Applicability and performance of deterministic and probabilistic physically based landslide modeling in a data-scarce environment of the colombian andes,” Journal of South American Earth Sciences, vol. 108, Jan. 12, 2021. [Online]. Available: https://doi.org/10.1016/j.jsames.2021.103175

D. R. Montgomery and W. E. Dietrich, “A physically based model for the topographic control on shallow landsliding,” International journal of applied earth observation and geoinformation, vol. 30, no. 4, Apr. 01, 1994. [Online]. Available: https://doi.org/10.1029/93WR02979

P. Aleotti and R. Chowdhury, “Landslide hazard assessment: summary review and new perspectives,” Bulletin of Engineering Geology and the Environment, vol. 58, Aug. 01, 1999. [Online]. Available: https://doi.org/10.1007/s100640050066

S. Lee, “Application of logistic regression model and its validation for landslide susceptibility mapping using gis and remote sensing data,” International Journal of Remote Sensing, vol. 26, no. 7, Sep. 19, 2004. [Online]. Available: https://doi.org/10.1080/01431160412331331012

M. L. Süzen and V. Doyuran, “Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to asarsuyu catchment, turkey,” Engineering Geology, vol. 71, no. 3-4, Apr. 25, 2003. [Online]. Available: https://doi.org/10.1016/S0013-7952(03)00143-1

A. Carrara, “Multivariate models for landslide hazard evaluation,” Journal of the International Association for Mathematical Geology, vol. 15, Jun. 1983. [Online]. Available: https://doi.org/10.1007/BF01031290

P. V. Gorsevski, P. Gessler, and R. B. Foltz, “Spatial prediction of landslide hazard using discriminant analysis and gis,” in GIS in the Rockies 2000 Conference, Denver, Colorado, 2000.

S. Lee and B. Pradhan, “Landslide hazard mapping at selangor, malaysia using frequency ratio and logistic regression models,” Landslides, vol. 4, no. 3-4, Jul. 07, 2006. [Online]. Available: https://doi.org/10.1007/s10346-006-0047-y

M. C. Herrera-Coy, L. P. Calderon, I. L. Herrera-Pérez, P. E. Bravo-López, C. Conoscenti, J. Delgado, and et al., “Landslide susceptibility analysis on the vicinity of bogotá-villavicencio road (eastern cordillera of the colombian andes),” Remote Sensing, vol. 15, no. 15, Jul. 31, 2023. [Online]. Available: https://doi.org/10.3390/rs15153870

L. Ermini, F. Catani, and N. Casagli, “Artificial neural networks applied to landslide susceptibility assessment,” Geomorphology, vol. 66, no. 1-4, Sep. 15, 2004. [Online]. Available: https://doi.org/10.1016/j.geomorph.2004.09.025

S. Lee, J. H. Ryu, J. S. Won, and H. J. Park, “Determination and application of the weights for landslide susceptibility mapping using an artificial neural network,” Engineering Geology, vol. 21, no. 3-4, Apr. 25, 2003. [Online]. Available: https://doi.org/10.1016/S0013-7952(03)00142-X

J. A. Valencia-Ortiz and A. M. Martínez-Graña, “A neural network model applied to landslide susceptibility analysis (capitanejo, colombia),” Geomatics, Natural Hazards and Risk, vol. 9, no. 1, 2018. [Online]. Available: https://doi.org/10.1080/19475705.2018.1513083

L. Ayalew and H. Yamagishi, “The application of gis-based logistic regression for landslide susceptibility mapping in the kakuda-yahiko mountains, central japan,” Geomorphology, vol. 65, no. 1-2, Jun. 07, 2004. [Online]. Available: https://doi.org/10.1016/j.geomorph.2004.06.010

S. B. Bai, J. Wang, G. N. Lü, P. G. Zhou, S. S. Hou, and S. N. Xu, “Gis-based logistic regression for landslide susceptibility mapping of the zhongxian segment in the three gorges area, china,” Geomorphology, vol. 115, no. 1-2, Feb. 15, 2010. [Online]. Available:https://doi.org/10.1016/j.geomorph.2009.09.025

A. Brenning, “Spatial prediction models for landslide hazards: review, comparison and evaluation,” Geomorphology, vol. 5, no. 6, Nov. 07, 2005. [Online]. Available: https://doi.org/10.5194/nhess-5-853-2005

G. G. Chevalier, V. Medina, M. Hürlimann, and A. Bateman, “Debris-flow susceptibility analysis using fluvio-morphological parameters and data mining: application to the central-eastern pyrenees,” Natural Hazards, vol. 67, Jan. 08, 2013. [Online]. Available: https://doi.org/10.1007/s11069-013-0568-3

R. Greco, M. Sorriso-Valvo, and E. Catalano, “Logistic regression analysis in the evaluation of mass movements susceptibility: The aspromonte case study, calabria, italy,” Engineering Geology, vol. 89, no. 1-2, Sep. 11, 2007. [Online]. Available: https://doi.org/10.1016/j.enggeo.2006.09.006

P. Goyes-Peñafiel and A. Hernandez-Rojas, “Landslide susceptibility index based on the integration of logistic regression and weights of evidence: A case study in popayan, colombia,” Engineering Geology, vol. 280, Dec. 06, 2020. [Online]. Available: https://doi.org/10.1016/j.enggeo.2020.105958

S. Lee and J. Abdul-Talib, “Probabilistic landslide susceptibility and factor effect analysis,” Engineering Geology, vol. 47, Nov. 30, 2005. [Online]. Available: https://doi.org/10.1007/s00254-005-1228-z

B. Pradhan and S. Lee, “Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling,” Environmental Modelling & Software, vol. 25, no. 6, Oct. 31, 2009. [Online]. Available: https://doi.org/10.1016/j.envsoft.2009.10.016

G. Poveda, “La hidroclimatología de colombia: una síntesis desde la escala inter-decadal hasta la escala diurna,” Rev. Acad. Colomb., vol. 28, no. 107, 2004. [53] G. Poveda, O. J. Mesa, L. F. Salazar, P. A. Arias, H. A. Moreno, S. C. Vieira, and et al., “The diurnal cycle of precipitation in the tropical andes of colombia,” Monthly Weather Review, vol. 133, no. 1, Jan. 01, 2005. [Online]. Available: https://doi.org/10.1175/MWR-2853.1

B. Calle, H. González, R. Peña, E. Escorce, and J. Durango. (1980) Geología de la plancha 166 jericó. Ingeominas. Bogotá. [Online]. Available: http://tinyurl.com/4k5dnbay

B. Calle, R. Salinas, H. Castro, M. Mejía, C. Rodríguez, and O. Ramírez. (1984) Geología de la plancha 165 carmen de atrato. Ingeominas. Bogotá.

M. J. Crozier, “Multiple-occurrence regional landslide events in new zealand: Hazard management issues,” Landslides, vol. 2, Nov. 12, 2005. [Online]. Available: https://doi.org/10.1175/MWR-2853.1

J. Chacón, C. Irigaray, T. Fernández, and R. El-Hamdouni, “Engineering geology maps: landslides and geographical information systems,” Bulletin of Engineering Geology and the Environment, vol. 65, Jun. 24, 2006. [Online]. Available: https://doi.org/10.1007/s10064-006-0064-z

R. Fell, J. Corominas, C. Bonnard, L. Cascini, E. Leroi, W. Z. Savage, and et al., “Guidelines for landslide susceptibility, hazard and risk zoning for land use planning,” Engineering Geology, vol. 102, no. 3-4, Mar. 04, 2008. [Online]. Available: https://doi.org/10.1016/j.enggeo.2008.03.022

F. Guzzetti, A. Carrara, M. Cardinali, and P. Reichenbach, “Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central italy,” Geomorphology, vol. 31, no. 1-4, May. 01, 1997. [Online]. Available: https://doi.org/10.1016/S0169-555X(99)00078-1

R. Soeters and C. J. Westen, “Slope instability recognition, analysis and zonation,” in Landslide: Investigations and Mitigation. Special Report, vol. 247, A. K. Turner and R. L. Schuster, Eds. Washington, D.C: The National Academy of Sciences, 1996, pp. 129–177.

L. Ayalew, H. Yamagishi, H. Marui, and T. Kanno, “Landslides in sado island of japan: Part ii. gis-based susceptibility mapping with comparisons of results from two methods and verifications,” Engineering Geology, vol. 81, no. 4, Aug. 26, 2005. [Online]. Available: https://doi.org/10.1016/j.enggeo.2005.08.004

P. M. Atkinson and R. Massari, “Generalised linear modelling of susceptibility to landsliding in the central apennies, italy,” Computers & Geosciences, vol. 24, no. 4, May. 15, 1998. [Online]. Available: https://doi.org/10.1016/S0098-3004(97)00117-9

T. Fawcett, “An introduction to roc analysis,” Pattern Recognition Letters, vol. 27, no. 8, Dec. 19, 2005. [Online]. Available: https://doi.org/10.1016/j.patrec.2005.10.010

F. C. Chang-Jo and A. G. Fabbri, “Validation of spatial prediction models for landslide hazard mapping,” Natural Hazards, vol. 30, Nov, 2003. [Online]. Available: https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b

J. Cepeda, J. A. Chávez, and C. Cruz-Martínez, “Procedure for the selection of runout model parameters from landslide back-analyses: application to the metropolitan area of san salvador, el salvador,” Landslides, vol. 7, Feb. 20, 2010. [Online]. Available: https://doi.org/10.1007/s10346-010-0197-9

D. B. Kirschbaum, T. Stanley, and J. Simmons, “A dynamic landslide hazard assessment system for central america and hispaniola,” Landslides, vol. 15, no. 10, Oct. 09, 2015. [Online]. Available: https://doi.org/10.5194/nhess-15-2257-2015

T. Fernández, C. Irigaray, R. El-Hamdouni, and J. Chacón, “Methodology for landslide susceptibility mapping by means of a gis. application to the contraviesa area (granada, spain),” Natural Hazards, vol. 30, Nov. 2003. [Online]. Available: https://doi.org/10.1023/B:NHAZ.0000007092.51910.3f

F. Guzzetti, A. Cesare-Mondini, M. Cardinali, F. Fiorucci, M. Santangelo, and K. T. Chang, “Landslide inventory maps: New tools for an old problem,” Earth-Science Reviews, vol. 112, no. 1-2, Feb. 08, 2012. [Online]. Available: https://doi.org/10.1016/j.earscirev.2012.02.001

T. Kavzoglu, E. Kutlug-Sahin, and I. Colkesen, “Landslide inventory maps: New tools for an old problem,” Engineering Geology, vol. 192, Apr. 03, 2015. [Online]. Available: https://doi.org/10.1016/j.enggeo.2015.04.004

C. W. Lin, C. M. Tseng, Y. Tseng, L. Y. Fei, Y. C. Hsieh, and P. Tarolli, “Recognition of large scale deep-seated landslides in forest areas of taiwan using high resolution topography,” Journal of Asian Earth Sciences, vol. 62, Oct. 19, 2012. [Online]. Available: https://doi.org/10.1016/j.jseaes.2012.10.022

H. Y. Hussin, V. Zumpano, P. Reichenbach, S. Sterlacchini, M. Micu, C. Westen, and et al., “Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model,” Geomorphology, vol. 253, Oct. 29, 2015. [Online]. Available: https://doi.org/10.1016/j.geomorph.2015.10.030

M. Galli, F. Ardizzone, M. Cardinali, F. Guzzetti, and P. Reichenbach, “Comparing landslide inventory maps,” Geomorphology, vol. 94, no. 3-4, Sep. 09, 2006. [Online]. Available: https://doi.org/10.1016/j.geomorph.2006.09.023

Y. Thiery, J. P. Malet, S. Sterlacchini, A. Puissant, and O. Maquaire, “Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment,” Geomorphology, vol. 92, no. 1-2, Feb. 17, 2007. [Online]. Available: https://doi.org/10.1016/j.geomorph.2007.02.020

M. V. Eeckhaut, T. Vanwalleghem, J. Poesen, G. Govers, G. Verstraeten, and L. Vandekerckhove, “Prediction of landslide susceptibility using rare events logistic regression: A case-study in the flemish ardennes (belgium),” Geomorphology, vol. 76, no. 3-4, Dec. 02, 2005. [Online]. Available: https://doi.org/10.1016/j.geomorph.2005.12.003

A. Clerici, S. Perego, C. Tellini, and P. Vescovi, “A procedure for landslide susceptibility zonation by the conditional analysis method,” Geomorphology, vol. 48, no. 4, Dec. 28, 2001. [Online]. Available: https://doi.org/10.1016/S0169-555X(02)00079-X

L. Donati and M. C. Turrini, “An objective method to rank the importance of the factors predisposing to landslides with the gis methodology: application to an area of the apennines (valnerina; perugia, italy),” Engineering Geology, vol. 63, no. 3-4, Jul. 09, 2001. [Online]. Available: https://doi.org/10.1016/S0013-7952(01)00087-4

S. Poli and S. Sterlacchini, “Landslide representation strategies in susceptibility studies using weights-of-evidence modeling technique,” Natural Resources Research, vol. 16, Feb. 15, 2007. [Online]. Available: https://doi.org/10.1007/s11053-007-9043-8

N. Simon, M. Crozier, M. Róiste, and A. Ghani-Rafek, “Point based assessment: Selecting the best way to represent landslide polygon as point frequency in landslide investigation,” Electronic Journal of Geotechnical Engineering, vol. 18, Sep. 2013. [Online]. Available: http://tinyurl.com/9uwssjra

I. Yilmaz, “Comparison of landslide susceptibility mapping methodologies for koyulhisar, turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine,” Environ Earth Sci, vol. 61, Dec. 09, 2009. [Online]. Available: https://doi.org/10.1007/s12665-009-0394-9

D. Costanzo, E. Rotigliano, C. Irigaray, J. D. Jiménez-Perálvarez, and J. Chacón, “Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river beiro basin (spain),” Natural Hazards and Earth System Sciences, vol. 12, no. 2, Jan. 04, 2012. [Online]. Available: https://doi.org/10.5194/nhess-12-327-2012,2012.

J. P. Wilson and J. C. Gallant, Terrain Analysis: Principles and Applications. Canada: John Wiley & Sons, Inc., 2000.

A. S. F. D. A. A. Center. NASA. [Online]. Available: http://tinyurl.com/y4nxunue

H. R. Pourghasemi, M. Mohammady, and B. Pradhan, “Landslide susceptibility mapping using index of entropy and conditional probability models in gis: Safarood basin, iran,” Catena, vol. 97, May. 09, 2012. [Online]. Available: https://doi.org/10.1016/j.catena.2012.05.005

I. D. Moore, R. B. Grayson, and A. R. Ladson, “Digital terrain modelling: A review of hydrological, geomorphological, and biological applications,” Hydrological Processes, vol. 5, no. 1, Jan. 1991. [Online]. Available: https://doi.org/10.1002/hyp.3360050103

K. Pawluszek and A. Borkowski, “Impact of dem-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of rożnów lake, poland,” Natural Hazards, vol. 86, Dec. 02 2016. [Online]. Available: https://doi.org/10.1007/s11069-016-2725-y

E. Tazik, Z. Jahantab, M. Bakhtiari, A. Rezaei, and S. Kazem-Alavipanah, “Landslide susceptibility mapping by combining the three methods fuzzy logic, frequency ratio and analytical hierarchy process in dozain basin,” The 1st ISPRS International Conference on Geospatial Information Research, Tehran, Iran, 2014.

H. Shahabi and M. Hashim, “Landslide susceptibility mapping using gis-based statistical models and remote sensing data in tropical environment,” Scientific Reports, vol. 5, Apr. 22, 2015. [Online]. Available: https://doi.org/10.1038/srep09899

Descargas

Publicado

2023-10-23

Cómo citar

Aristizábal-Giraldo, E. V., & Ruiz-Vásquez, D. (2023). Evaluación de la susceptibilidad a deslizamientos en regiones con escasez de datos utilizando sensores remotos. Revista Facultad De Ingeniería Universidad De Antioquia, (112), 45–59. https://doi.org/10.17533/udea.redin.20231030

Número

Sección

Artículo de investigación