Does Predicative Structure [Verb + Direct Object] Have Predictive Character? A Syntactic-Semantic Characterization for Sentiment Analysis Purposes
DOI:
https://doi.org/10.17533/udea.lyl.n78a01Keywords:
sentiment analysis, verb, direct object complement, poverty in Colombia, corpus linguisticsAbstract
Traditionally, sentiment analysis has focused on processing less complex textual units, as sentences, through detailed characterization of their components like adjectives. However, there are other types of units, such as predicative structures, that might be discriminant elements of more complex discursive units like the news. Thus, in this article, word occurrences of the predicative structure [verb + direct object] are extracted and characterized from a corpus on poverty compiled from Colombian newspapers. The results demonstrate that these units are discriminant and might help with polarity classification.
Downloads
References
Alcoba, S. (1999). La flexión verbal. En Bosque, I., & Demonte, V. (Eds.). Gramática Descriptiva de la Lengua Española (p. 4917).
Álvarez, S., & Naharro, N. (2017). Representaciones de la pobreza en la prensa hegemónica Argentina. En Chiquito, A., & Quiroz, G. (Eds.). Pobreza, Lenguaje y Medios en América Latina (pp. 235–264). Berna: Peter Lang.
Benamara, F., Cesarano, C., Picariello, A., Reforgiato, D., & Subrahmanian, V. (2007). Sentiment Analysis: Adjectives and Adverbs are better than Adjectives Alone. En Proceedings of International Conference on Weblogs and Social Media.
Bosque, I. (2006). Diccionario combinatorio práctico del español contemporáneo. Madrid: Ediciones SM.
Chiquito, A., & Quiroz, G. (Eds.) (2017). Pobreza, lenguaje y medios en América Latina. Berna: Peter Lang.
Chomsky, N. (1997). What Makes Mainstream Media Mainstream. Recuperado de http://www.zmag.org/chomsky/articles/z9710-mainstream-media.html
Colombia. DANE. (2012). Pobreza en Colombia. Bogotá D.C.: Oficina de Prensa DANE.
Ding, X., Liu, B., & Yu, P. S. (2008). A Holistic Lexicon-based Approach to Opinion Mining. En Proceedings of the International Conference on Web Search and Web Data Mining - WSDM’08 (pp. 231-240).
Gili Gaya, S. (1980). Curso superior de sintaxis española. Barcelona: Vox Biblograf.
Hatzivassiloglou, V. & McKeown, K. R. (1997). Predicting the Semantic Orientation of Adjectives. En Proceedings of the 35th Annual Meeting on Association for Computational Linguistics (pp. 174–181). Association for Computational Linguistics.
Hatzivassiloglou, V. & Wiebe, J. M. (2000). Effects of Adjective Orientation and Gradability on Sentence Subjectivity. En Proceedings of the 18th Conference on Computational Linguistics, (1), (pp. 299-305). Association for Computational Linguistics.
Joshi, M. & Penstein-Rosé, C. (2009). Generalizing Dependency Features for Opinion Mining. En Proceedings of the ACL-IJCNLP 2009 Conference Short Papers (pp. 313-316).
Koppel, M. & Schler, J. (2006). The Importance of Neutral Examples for Learning Sentiment. Computational Intelligence, 22(2), pp. 100-109.
Levin, B. (1993). English Verb Classes and Alternations. Chicago: The University of Chicago Press.
Liu, B. (2012). Sentiment Analysis and Opinion Mining. En Hirst, G. (Ed.). Synthesis Lectures on Human Language Technologies (pp. 1-167). California: Morgan & Claypool.
Lorente, M. (2002). Verbos y discurso especializado. Estudios de Lingüística del Español [En línea]. Recuperado de http://elies.rediris.es/elies16/Lorente.html
Mullen, T., & Collier, N. (2004). Sentiment Analysis Using Support Vector Machines with Diverse Information Sources. En Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (4), (pp. 412-418).
Nasukawa, T., & Yi, J. (2003). Sentiment Analysis: Capturing Favorability Using Natural Language Processing. En Proceedings of the 2nd international conference on Knowledge capture (pp. 70-77).
Naciones Unidas. (2015). Objetivos de Desarrollo del Milenio. Nuevas Ediciones S.A. Recuperado de http://www.un.org/es/millenniumgoals/pdf/PR_Global_MDG09_SP.pdf
Ng, V., Dasgupta, S., & Arifin, S. (2006). Examining the Role of Linguistic Knowledge Sources in the Automatic Identification and Classification of Reviews. En Proceedings of the COLING/ACL on Main Conference Poster Sessions (pp. 611-618).
Pardo, N. & Ruiz, J. (2017). Pobreza y bienestar en Colombia, construcción de referenciales en perspectiva mediática. En Chiquito, A. & Quiroz, G. (Eds.). Pobreza, lenguaje y medios en América Latina (pp. 265-302). Berna: Peter Lang.
Pérez Pérez, C. M. (2018). Metodología para la caracterización de patrones [verbo + objeto directo] sobre pobreza en la prensa colombiana para propósitos de análisis de sentimientos (tesis de maestría). Universidad de Antioquia, Medellín, Colombia.
Quiroz, G., Tamayo, A., & Zuluaga, J. (2017). Cuestiones metodológicas y técnicas en la recolección de un corpus de prensa con la palabra «pobreza». En Chiquito, A. & Quiroz, G. (Eds.). Pobreza, lenguaje y medios en América Latina (pp. 21-41). Berna: Peter Lang.
Quiroz, G., Chiquito, A., & Zuluaga, J. (2017). Cómo se representa lingüísticamente la pobreza en la prensa colombiana. En Chiquito, A. & Quiroz, G. (Eds.). Pobreza, lenguaje y medios en América Latina (pp. 83-107). Berna: Peter Lang.
Real Academia Española. (2017). Diccionario de la lengua española. Madrid: Espasa.
Riloff, E., & Wiebe, J. (2003). Learning Extraction Patterns for Subjective Expressions. En Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing (pp. 105-112). Association for Computational Linguistics.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based Methods for Sentiment Analysis. Computational Linguistics, 37(2), pp. 267-307.
Tamayo, A. (2018). Metodología para el análisis automático de sentimientos en documentos a partir de
técnicas de aprendizaje automático y lingüística computacional (Tesis de maestría). Universidad de Antioquia, Medellín, Colombia.
Tan, S., Wang, Y. & Cheng, X. (2008). Combining Learn-Based and Lexicon-Based Techniques for Sentiment Detection without Using Labeled Examples. SIGIR 2008.
Turney, P. D. (2002). Thumbs Up or Thumbs Down?: Semantic Orientation Applied to Unsupervised Classification of Reviews. En Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (pp. 417-424). Association for Computational Linguistics.
Whitelaw, C., Garg, N., & Argamon, S. (2005). Using Appraisal Groups for Sentiment Analysis. En Proceedings of the 14th ACM International Conference on Information and Knowledge Management (pp. 625-631). ACM.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Lingüística y Literatura

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Creative Commons by-nc-sa
Those authors who have publications with this journal, accept the following terms:
1. The journal is the owner of the copyright of the articles, which will be simultaneously subject to the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. that allows third parties to share the work provided its author is indicated and its first publication in this journal.
2. The authors may adopt other agreements of non-exclusive license of distribution of the version of the published work (e.g., deposit it in an institutional telematic file or publish it in a monographic volume) provided that the initial publication in this journal is indicated.
3. Authors are allowed and recommended to disseminate their work via the Internet (e.g. in institutional telematic files or on their website) before and during the submission process, which can produce interesting exchanges and increase citations of the published work.