Liesegang rings as origin of enamel symmetrical patterns

Authors

  • Mario Rodríguez-Blanco Universidad Nacional de Colombia
  • Edgar Delgado-Mejía Universidad Nacional de Colombia

DOI:

https://doi.org/10.17533/udea.rfo.16137

Keywords:

Liesengang rings, Electrolytes, Mosphogens, Dentin, Physiological calcification

Abstract

Introduction: teeth contain various visible structures that have repeating shapes and symmetrical patterns such as prisms, crests, enamel spindles, Hunter-Schreger bands, and Retzius incremental lines. On the other hand, Liesegang rings, studied and applied for over a hundred years by geologists and other specialists, are incremental repetitive symmetrical bands found in natural minerals which are similar to those observed in tooth enamel. This article aims to review the widely known processes of formation of Liesegang rings in nature and relate them with dentin mineralization and the conformation of their characteristic anatomy. Methods: to this end, a bibliographic review was conducted, restricted to the 1970-2013 period, in the Science Direct, Springer, Medline, and Pubmed databases, finally selecting 51 references with original information or relevant data on the subject. Results and conclusions: a detailed analysis of the processes of formation of these rings and the similarity of rocky and dental minerals lead to think that the processes developed in rocks and hard dental tissues would be the same.

|Abstract
= 296 veces | PDF (ESPAÑOL (ESPAÑA))
= 211 veces|

Downloads

Download data is not yet available.

Author Biographies

Mario Rodríguez-Blanco, Universidad Nacional de Colombia

DDM, Specialist in Oral Rehabilitation, Candidate to MA in Dentistry, Universidad Nacional de Colombia.

Edgar Delgado-Mejía, Universidad Nacional de Colombia

Chemist, Master of Science (Chemistry), Associate Professor, Department of Chemistry, Universidad Nacional de Colombia

References

Colegio Oficial de Geólogos de España. Diccionario geológico del Ilustre Colegio Oficial de Geólogos de España. 2a ed. Madrid: CYAN; 1991.

Talanquer V, Irazoque G. Phase transitions and universality. Educ Quim 1991; 2(2): 641.

Talanquer V, Irazoque G. Auto-organization II: oscillating reactions. Educ Quim 1992; 3(1): 25.

Liesegang RE. Ueber einige eigenschaften von gallerten. Naturwissenschaftliche Wochenschrift 1896; 11(30): 353-362.

Stong CL. Las sales reaccionan en un gel para producir bandas de Liesegang en color. Investigación y Ciencia [Internet]. 1977; 8 [Consultado 2013 Sep 14]. Disponible en: http://www.investigacionyciencia.es/investigacion-y-ciencia/numeros/1977/5

Stern KH. The Liesegang phenomenon. Chem Rev 1954; 54(1): 79-99.

Boada-Ferrer M. Los anillos de Liesegang. Investigación y Ciencia 2009; 389: 86-88.

Sharbaugh III AH, Sharbaugh AH Jr. An experimental study of the Liesegang phenomenon and crystal growth in silica gels. J Chem Educ 1989; 66(7): 589 -594.

Boyer W. A textbook of colloid chemistry. 2.a ed. Riverside California: John Wiley and sons; 1956.

Ruiza M, Fernández T, Tamaro E, Duran M. Biografías y vidas. 14.a ed. [Internet] 2004 [Consultado 2013 Sep 2]. Disponible en: http://www.biografiasyvidas.com/biografia/o/ostwald.htm

Glasstone S. Tratado de química física. 7.a ed. Madrid: Aguilar; 1970.

Ostwald W. Lehrbuch der allgemeinen chemie. Leipzig: Engelman; 1897.

Valenzuela C. Química general, introducción a la química teórica. Salamanca: Universidad de Salamanca; 1995.

O ́Connor JJ, Robertson EF. The McTutor history of mathematics archive. [Internet]. [Consultado 2014 ago 13]. Disponible en: http://www.history.mcs.st-and.ac.uk/Biographies/Turing.html

Fernández I, García J, Pacheco J. Bifurcations and Turing instabilities in reaction-difussion systems with time-dependent diffusivities. Rev Academ Canaria Ciencias 2004; 1-2: 89-98.

Hodges AL. The man behind the machine. Nat 2012; 482:441.

Palazzesi A. Alan Turing. Los animales y sus manchas. [Internet]. [Consultado 2013 Sep 13]. Disponible en: http://www.neoteo.com/alan-turing

Economou AD, Ohazama A, Pornaveetus T, Sharpe PT, Kondo S, Basson MA et al. Periodic stripe formation by a Turing mechanism operating at growth zone in the mammalian palate. Nat Genet 2012; 44: 348-351.

Miramontes, P. La biología matemática. En: Bautista R. Las matemáticas y su entorno. México: Siglo XXI; 2004. p. 47-65.

Perry H. Manual del ingeniero químico. Tomo II. 6.a ed. México D. F.: McGraw Hill; 2000.

Thesleff I, Vaahtokari A, Partanen AM. Regulation of organogenesis common molecular mechanisms regulating the development of teeth and other organs. Int J Dev Biol 1995; 39(1): 35-50.

Moore KL. Embriología Clínica. 7.a ed. Madrid: Elsevier; 2004.

Fincham AG, Moradian-Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J Struct Biol 1999; 126(3): 270-299.

Munhoz C, Leblond C. Deposition of calcium phosphate into dentin and enamel as shown by radioautography of sections of incisor teeth following injection of 45Ca into rats. Calcif Tissue Res 1974; 15(3): 221-235.

Smith CE. Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 1998; 9(2): 128-161.

Yeau-Ren J, Tsung-Ting L, Hsiu-Ming H, Hsin-Ju C, Dar-Bin S. Human enamel rod presents anisotropic nanotribological properties. J Mech Behav Biomed Mater 2010; 4: 515-522.

Wen HB, Fincham AG, Moradian-Oldak J. Progressive accretion of amelogenin molecules during nanospheres assembly revealed by atomic force microscopy. Matrix Biol 2001; 20(5-6): 387-395.

Paine ML, White SN, Lou W, Fong H, Sarikaya M, Snead ML. Regulated gene expression dictates enamel structure and tooth function. Matrix Biology 2001; 20: 273-292.

Teaford M, Smith M, Ferguson M. Development, function and evolution of teeth. 5.a ed. Cambridge: Cambridge University Press; 2000.

Nanci A. Ten Cate’s Oral Histology: development, structure, and function. 8.a ed. Philadelphia: Elsevier; 2008.

Kato S, Saitoh Y, Iwai K, Miwa N. Hydrogen-rich electrolyzed warm water represses wrinkle formation against UVA ray together with type I collagen production and oxidative —stress diminishment in fibroblasts and cell— injury prevention in keratinocytes. J Photochem Photobiol B 2012; 106: 24-33.

Toko K, Nosaka M, Fujiyoshi T, Yamafuji K. Periodic band pattern as a dissipative structure in ion transport systems with cylindrical shape. B Math Biol 1988; 50(3): 255-288.

Mahoney P. Intraspecific variation in M1 enamel development in modern humans: implications for human evolution. J Hum Evol 2008; 55: 131-147.

Guangren Q, Linlin F, Ji-Zhi Z, Yunfeng X, Jianyong L, Jia Z et al. Solubility product (Ksp)-controlled removal of chromate and phosphate. Chem Eng J 2012; 181-182(1): 251-258.

Porto I, Merzel J, Barbosa de Sousa F, Bachmann L, Aparecido J, Peres R et al. Enamel mineralization in the absence of maturation stage ameloblasts. Arch Oral Biol 2009; 54: 313-321.

Barge LM, Nealson K, Petruska J. Organic influences on inorganic patterns of diffusion controlled precipitation in gels. Chem Phys Lett 2010; 493: 340-345.

Ngankam P, Schaaf P, Voegel J, Cuisinier F. Heterogeneous nucleation of calcium phosphate salts at a solid/liquid interface examined by scanning angle. J Cryst Growth 1999; 197: 927-938.

Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials 2010; 31(7): 1465-1485.

Dorozhkin SV. Calcium orthophosphates. J Mater Sci 2007; 42: 1061-1095.

Johans C, Kontturi K, Schiffrin D. Nucleation at liquid-liquid interfaces: galvanostatic study. J Electroanal Chem 2002; 526(1-2): 29-35.

Sasaki T, Debari K, Garant PR. Ameloblast modulation and changes in the Ca, P and S content of developing enamel matrix as revealed by SEM-EDX. J Dent Res 1987; 66(3): 778-783.

Hubbard MJ. Calcium transport across the dental enamel epithelium. Crit Rev Oral Biol Med 2000; 11(4): 437-466.

Karam T, El-Rassy H, Zaknoun F, Moussa Z, Sultan R. Liesegang banding and multiple precipitate formation in cobalt phosphate systems. Chem Phys Lett 2012; 525-526(1): 54-59.

Chunfang L, Steinar R. SEM observations of Retzius lines and prism cross —striations in human dental enamel after different acid etching regimes. Arch Oral Biol 2004; 49(1): 45-52.

Fattibene P, Callens F. EPR dosimetry with tooth enamel: a review. Appl Radiat Isot 2010; 68(11): 2033-2116.

Lundgren T, Persson LG, Engström EU, Chabala J, Levi -Settid R, Norén J. A secondary ion mass spectroscopic study of the elemental composition pattern in rat incisor dental enamel during different stages of ameloblast differentiation. Arch Oral Biol 1998; 43(11): 841-848.

Yeau-Ren J, Tsung-Ting L, Hsiu-Ming H, Hsin-Ju Ch, Dar-Bin S. Human enamel rod presents anisotropic nanotribological properties. J Mech Behav Biomed Mater 2011; 4(4): 515-522.

Habelitz S, Marshall SJ, Marshall GW, Balooch M. Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol 2001; 46(2): 173-183.

Hong-He L, Swain MV. Understanding the mechanical behavior of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater 2008; 1(1): 18-29.

Grünbaum B, Shephard GC. Tilings and patterns. San Francisco: W. H. Freeman and Company; 1987.

Chavey D. Tilings by regular polygons—II: a catalog of tilings. Comput Math Appl 1989; 17: 147-165.

Published

2015-04-21

How to Cite

Rodríguez-Blanco, M., & Delgado-Mejía, E. (2015). Liesegang rings as origin of enamel symmetrical patterns. Revista Facultad De Odontología Universidad De Antioquia, 26(2), 447–467. https://doi.org/10.17533/udea.rfo.16137