Nitinol corrosion under force stresses in simulated physiological fluid with and without fluorides

Authors

  • Nerly Deyanira Montanez-Supelano Universidad Industrial de Santander
  • Darío Yesid Peña-Ballesteros Universidad Industrial de Santander
  • Ronel Cardozo Universidad Santo Tomás
  • Martha Faria Universidad Santo Tomás
  • Bayron Hernán Montero-Viveros Universidad Santo Tomás
  • Gisseth Sánchez Universidad Santo Tomás
  • Erika Zambrano Universidad Santo Tomás

DOI:

https://doi.org/10.17533/udea.rfo.v28n1a3

Keywords:

Nickel-titanium alloy, Fluorides, Corrosion, Electrochemical techniques

Abstract

Introduction: nickel-titanium (nitinol) wires may potentially corrode oral environments causing biocompatibility problems. The purpose of this study was to compare the behavior of corrosion of nitinol wires in artificial saliva with different levels of pH, fluoride concentration, and tension degrees. Methods: an experimental study applying four electrochemical techniques: corrosion potential, linear polarization resistance, Tafel curves, and electrochemical impedance spectroscopy. Samples were cemented on teeth simulating different crowding degrees (56 gf and 224 gf) at various levels of fluoride concentration (0% and 0.5%) and pH (4 and 7). Results: the corrosion strength values for a sample submerged at pH 4, 0% NaF during 5 hours is lower for a force of 224 gf than for 56 gf. When the electrolyte is added a concentration of 0.5% sodium fluoride, it increases polarization resistance for a force of 224 gf. Conclusions: this study confirmed the existence of oxides on the nickel-titanium surface, especially on the arch exposed for 14 days to pH 4 and 0.5% NaF.

|Abstract
= 568 veces | PDF (ESPAÑOL (ESPAÑA))
= 189 veces|

Downloads

Download data is not yet available.

Author Biographies

Nerly Deyanira Montanez-Supelano, Universidad Industrial de Santander

Chemical Engineer, MSc in Materials Engineering. Universidad Industrial de Santander. Bucaramanga, Colombia

Darío Yesid Peña-Ballesteros, Universidad Industrial de Santander

Metallurgical Engineer, PhD in Corrosion. Professor at the Universidad Industrial de Santander. Bucaramanga, Colombia 

Ronel Cardozo, Universidad Santo Tomás

DMD, Specialist in Orthodontics. Universidad Santo Tomás, School of Dentistry, Bucaramanga, Colombia. 

Martha Faria, Universidad Santo Tomás

DMD, Specialist in Orthodontics. Universidad Santo Tomás, School of Dentistry, Bucaramanga, Colombia 

Bayron Hernán Montero-Viveros, Universidad Santo Tomás

DMD, Specialist in Orthodontics. Universidad Santo Tomás, School of Dentistry, Bucaramanga, Colombia 

Gisseth Sánchez, Universidad Santo Tomás

DMD, Specialist in Orthodontics. Universidad Santo Tomás, School of Dentistry, Bucaramanga, Colombia 

Erika Zambrano, Universidad Santo Tomás

DMD, Specialist in Orthodontics. Universidad Santo Tomás, School of Dentistry, Bucaramanga, Colombia. 

References

Graber TM, Vanarsdall RL, Vig KW. Biomateriales en ortodoncia. En: Ortodoncia: Principios generales y técnicas. 4 ed., Buenos Aires: Editorial Médica Panamericana; 2003. p. 345-390.

Chaturvedi TP. Una revisión sobre la corrosión de los metales en ortodoncia [Corrosion behavior of orthodontic alloys]. The Orthodontic Cyber Journal [Internet] 2008; enero [consultado el 21 de noviembre de 2012]. Disponible en: https://web.archive.org/web/20101128180222/http://orthocj.com/journal/uploads/2008/01/0054_es.pdf

Shabalovskaya S, Anderegg J, Van Humbeeck J. Critical overview of nitinol surfaces and their modifications for medical applications. Acta Biomater 2008; 4(3): 447-467. DOI: https://dx.doi.org/10.1016/j.actbio.2008.01.013

Kusy RP. A review of contemporary archwires: their properties and characteristics. Angle Orthod 1997; 67(3): 192-207.

Walker, MP, Ries D, Kula K, Ellis M, Fricke B. Mechanical properties and surface characterization of beta titanium and stainless steel orthodontic wire following topical fluoride treatment. Angle Orthod 2007; 77(2): 342-348.

Venugopalan R. Trépanier C. Assessing the corrosion behaviour of Nitinol for minimally-invasive device design. Min Invas Ther & Allied Technol 2000; 9(2): 67-74.

Montañez N, Peña DY, Estupiñán H. Corrosión de alambres de nitinol en saliva artificial por técnicas electroquímicas. Rev ION, 2008; 21(1): 87-96.

Lee T, Wang C, Huang T, Chen L, Chou M, Huang H. Corrosion resistance of titanium-containing dental orthodontic wires in fluoride-containing artificial saliva. J Alloy Comp 2009; 448(1): 482-489.

Uribe GA, Aristizábal JF. Metales y alambres en ortodoncia. En: Fundamentos de odontología: Ortodoncia, teoría y clínica. 2 ed., Medellín: Corporación para investigaciones biológicas; 2010. p. 226-245.

Nanda R. Biomecánica en Ortodoncia Clínica. Argentina: Editorial Médica Panamericana; 1997.

ASTM International. Standard practice for calculation of corrosion rates and related information from electrochemical measurements. Designation: G102-89 (reapproved 2004). Conshohocken, Pensilvania: ASTM; 2004.

ASTM International. Standard test method for conducting potentiodynamic polarization resistance measurements. Designation: G59-97 (reapproved 2003). Conshohocken, Pensilvania: ASTM; 2003.

Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoridated mouthwashes on corrosion resistance of orthodontics wires. Biomaterials 2004; 25(19): 4535-4542.

Li X, Wang J, Han EH, Ke W. Influence of fluoride and chloride on corrosion behavior of NiTi orthodontic wires. Acta Biomater 2007; 3(5): 807-815.

Walker MP, White RJ, Kula KS. Effect of fluoride prophylactic agents on the mechanical properties of nickel-titanium-based orthodontic wires. Am J Orthod Dentofacial Orthop 2005; 127(6): 662-669.

Zhu L, Trépanier C, Fino J, Pelton AR. Oxidation of nitinol and its effect on corrosion resistance. En: ASM Materials & Processes for Medical Device Conference; Sanjay Shrivastava 2003. California: ASM International; 2003. p. 156-161.

Weinhold E, Velazco G. Corrosión de brackets ortodónticos y su implicación en los procesos alérgicos bucales. Dentum 2005; 5(3): 84-90.

Liu JK, Lee TM, Liu IH. Effect of loading force on the dissolution behavior and surface properties of nickel-titanium orthodontic archwires in artificial saliva. Am J Orthod Dentofacial Orthop 2011; 140(2): 166-176.

Kumar S, Narayanan S, Kumar SS. Influence of fluoride ion on the electrochemical behaviour of β-Ti alloy for dental implant application. Corros Sci 2010; 52(5): 1721-1727.

Published

2016-12-16

How to Cite

Montanez-Supelano, N. D., Peña-Ballesteros, D. Y., Cardozo, R., Faria, M., Montero-Viveros, B. H., Sánchez, G., & Zambrano, E. (2016). Nitinol corrosion under force stresses in simulated physiological fluid with and without fluorides. Revista Facultad De Odontología Universidad De Antioquia, 28(1), 54–70. https://doi.org/10.17533/udea.rfo.v28n1a3