Real-time quantitative polymerase chain reaction (QPCR) for the identification and quantification of Streptococcus Mutans in saliva and dental biofilm in children

  • Gustavo Adolfo Moncada-Cortés Universidad Mayor de Santiago
  • Lorena del Carmen Duperat Universidad de Chile
  • Patricia Palma Universidad de Chile
  • Gino Corsini Universidad Autónoma de Chile
  • Miguel Neira Universidad de Chile
  • Evelyn Reyes Universidad de Chile
  • Osmir Batista Oliveira-Junior Universidade Estadual Paulista
  • Simone Faleiros Universidad de Chile
  • Valeria Gordan University of Florida
  • Ismael Yévenes Universidad de Chile
Keywords: S. muntans, qPCR, gtfB gen, Dental biofilm, Saliva

Abstract

Introduction: the objective of this study was to use real-time qPCR to identify and quantify the Streptococcus mutans species in samples of saliva and dental biofilm. Methods: 27 children were randomly chosen with the following criteria: 8 years of age, low socio-economic levels, residing in the northern metropolitan area of Santiago de Chile; they were asked to attend an appointment while fasting with no teeth brushing for at least 12 hours, in order to collect non-stimulated saliva and a pool of supragingival dental biofilm of all the mesio-vestibular sides of anterior and posterior teeth. The amount of S. mutans in the samples was quantified by qPCR using primers that amplify a fragment of the gtfB gene of S. mutans. Results: the amplification showed 98% efficiency with a fluorescence of 3.36 cycles. The melting curve presented a single maximum at the same temperature for all samples. Conclusion: the methodology allows the specific identification and quantification of gene gtfB of S. mutans in saliva and dental biofilm in a quick and reliable manner, contributing to the identification of individual cariogenic risk.

|Abstract
= 120 veces | PDF (ESPAÑOL (ESPAÑA))
= 99 veces|

Downloads

Download data is not yet available.

Author Biographies

Gustavo Adolfo Moncada-Cortés, Universidad Mayor de Santiago

DDS, PhD, Dental School, Universidad Mayor, Santiago, Chile 

Lorena del Carmen Duperat, Universidad de Chile
DDS, Chemistry, Basic Science Department, Dental School, Universidad de Chile
Patricia Palma, Universidad de Chile
DDS, Microbiology, Departament of Oral Pathology, Dental School, Universidad de Chile
Gino Corsini, Universidad Autónoma de Chile
BQ Centro de Investigación Biomédica, School of Health Sciences, Universidad Autónoma de Chile 
Miguel Neira, Universidad de Chile
BQ, Chemistry, Basic Science Department, Dental School, Universidad de Chile 
Evelyn Reyes, Universidad de Chile
DDS, Chemistry, Basic Science Department, Dental School, Universidad de Chile
Osmir Batista Oliveira-Junior, Universidade Estadual Paulista
DDS PhD, Universidade Estadual Paulista, UNESP, School of Dentistry, Department of Restorative Dentistry, Araraquara, Brazil 
Simone Faleiros, Universidad de Chile
DDS PhD Cariology, Dental School, Universidad de Chile  
Valeria Gordan, University of Florida
DDS MS Department of Restorative Dentistry, Division of Operative Dentistry Department, College of Dentistry, University of Florida
Ismael Yévenes, Universidad de Chile

BQ Chemistry, Basic Science, Dental School, Universidad de Chil

References

Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet 2007; 369(9555): 51-59

Petersen PE. The World Oral Health Report 2003: continuous improvement of oral health in the 21st century—the approach of the WHO Global Oral Health Programme. Community Dent Oral Epidemiol 2003; 31 Suppl 1: 3-23.

Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bull World Health Organ 2005; 83(9): 661-669.

Urzua I, Mendoza C, Arteaga O, Rodríguez G, Cabello R, Faleiros S et al. Dental caries prevalence and tooth loss in Chilean adult population: first national dental examination survey. Int J Dent 2012; 2012. http://dx.doi.org/10.1155/2012/810170.

Marsh P, Martin M, Lewis M, Williams D. Oral microbiology. 5 ed. Londres: Churchill Livingstone; 2009.

Simón-Soro A, Belda-Ferre P, Cabrera-Rubio R, Alcaraz LD, Mira A. A tissue-dependent hypothesis of dental caries. Caries Res 2013; 47(6): 591-600.

Burne RA. Oral streptococci... products of their environment. J Dent Res. 1998; 77(3): 445-452.

Rupf S, Merte K, Eschrich K, Kneist S. Streptococcus sobrinus in children and its influence on caries activity. Eur Arch Paediatr Dent 2006; 7(1): 17-22.

Gordan VV, Garvan CW, Ottenga ME, Schulte R, Harris PA, McEdward D et al. Could alkali production be considered an approach for caries control? Caries Res 2010; 44(6): 547-554.

Liu Y, Dong Y, Chen YY, Burne RA. Environmental and growth phase regulation of the Streptococcus gordonii arginine deiminase genes. Appl Environ Microbiol 2008; 74(16): 5023-5030.

Dong Y, Chen YY, Burne RA. Control of expression of the arginine deiminase operon of Streptococcus gordonii by CcpA and Flp. J Bacteriol 2004; 186(8): 2511-2514.

Fejerskov O. Changing paradigms in concepts on dental caries: consequences for oral health care. Caries Res 2004; 38(3): 182-191.

Nauntofte B, Tenovuo JO, Lagerlöf F. Secretion and composition of saliva. En: Fejerskov O, Kidd E (eds). 1 ed. Dental caries: the disease and its clinical management. Oxford: Blackwell; 2003. p. 7-27

Fejerskov O. Different concepts of dental caries and their implications. 2 ed. Copenhagen: Munksgaard; 1994.

Facklam R. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 2002; 15(4): 613-630.

Nakano K, Nomura R, Nakagawa I, Hamada S, Ooshima T. Demonstration of Streptococcus mutans with a cell wall polysaccharide specific to a new serotype, k, in the human oral cavity. J Clin Microbiol 2004; 42(1): 198-202.

Nakano K, Inaba H, Nomura R, Nemoto H, Takeda M, Yoshioka H et al. Detection of cariogenic Streptococcus mutans in extirpated heart valve and atheromatous plaque specimens. J Clin Microbiol 2006; 44(9): 3313-3317.

Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 2011; 45(1): 69-86.

Yano A, Konno N, Imai S, Kato H. Inhibitory effects of polysaccharides on the cariogenic activities of Streptococcus mutans. Biosci Biotechnol Biochem 2012; 76(12): 2313-2316.

Napimoga MH, Höfling JF, Klein MI, Kamiya RU, Gonçalves RB. Transmission, diversity and virulence factors of Streptococcus mutans genotypes. J Oral Sci 2005; 47(2): 59-64.

Senneby A, Mejàre I, Sahlin NE, Svensäter G, Rohlin M. Diagnostic accuracy of different caries risk assessment methods. A systematic review. J Dent 2015; 43(12): 1385-93.

Karjalainen S, Tolvanen M, Pienihäkkinen K, Söderling E, Lagström H, Simell O et al. High sucrose intake at 3 years of age is associated with increased salivary counts of mutans streptococci and lactobacilli, and with increased caries rate from 3 to 16 years of age. Caries Res 2015; 49(2): 125-132.

Twetman L, Twetman S. Comparison of two chair-side tests for enumeration of Mutans Streptococci in saliva. Oral Health Dent Manag 2014; 13(3): 580-583.

Childers NK, Osgood RC, Hsu KL, Manmontri C, Momeni SS, Mahtani HK et al. Real-time quantitative polymerase chain reaction for enumeration of Streptococcus mutans from oral samples. Eur J Oral Sci 2011; 119(6): 447-454.

Al-Robaiy S, Rupf S, Eschrich K. Rapid competitive PCR using melting curve analysis for DNA quantification. Biotechniques 2001; 31(6): 1382 1386, 1388.

Rupf S, Merte K, Eschrich K. Quantification of bacteria in oral samples by competitive polymerase chain reaction. J Dent Res 1999; 78(4): 850-856.

Rupf S, Merte K, Kneist S, Al-Robaiy S, Eschrich K. Comparison of different techniques of quantitative PCR for determination of Streptococcus mutans counts in saliva samples. Oral Microbiol Immunol 2003; 18(1): 50-53.

Chen Z, Saxena D, Caufield PW, Ge Y, Wang M, Li Y. Development of species-specific primers for detection of Streptococcus mutans in mixed bacterial samples. FEMS Microbiol Lett 2007; 272(2): 154-162.

Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K et al. The real-time polymerase chain reaction. Mol Aspects Med 2006; 27(2-3): 95-125.

Sloots TP, Nissen MD, Ginn AN, Iredell JR. Rapid identification of pathogens using molecular techniques. Pathology 2015; 47(3): 191-198.

Atieh MA. Accuracy of real-time polymerase chain reaction versus anaerobic culture in detection of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis: a meta-analysis. J Periodontol 2008; 79(9): 1620-1629.

Karsai A, Müller S, Platz S, Hauser MT. Evaluation of a homemade SYBR green I reaction mixture for real-time PCR quantification of gene expression. Biotechniques 2002; 32(4): 790-792, 794-796.

Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 2002; 29(1): 23-39.

Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M et al. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem 2002; 309(2): 293-300.

Taylor SC, Mrkusich EM. The state of RT-quantitative PCR: firsthand observations of implementation of minimum information for the publication of quantitative real-time PCR experiments (MIQE). J Mol Microbiol Biotechnol 2014; 24(1): 46-52.

Yoshida A, Suzuki N, Nakano Y, Kawada M, Oho T, Koga T. Development of a 5’ nuclease-based real-time PCR assay for quantitative detection of cariogenic dental pathogens Streptococcus mutans and Streptococcus sobrinus. J Clin Microbiol 2003; 41(9): 4438-4441.

Boutaga K, van Winkelhoff AJ, Vandenbroucke-Grauls CM, Savelkoul PH. Comparison of real-time PCR and culture for detection of Porphyromonas gingivalis in subgingival plaque samples. J Clin Microbiol 2003; 41(11): 4950-4954.

Weng T, Jin N, Liu L. Differentiation between amplicon polymerization and nonspecific products in SYBR green I real-time polymerase chain reaction. Anal Biochem 2005; 342(1): 167-169.

Morgan CA, Herman N, White PA, Vesey G. Preservation of micro-organisms by drying; a review. J Microbiol Methods 2006; 66(2): 183-193.

Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 2006; 19(1): 165-256.

Ono T, Hirota K, Nemoto K, Fernandez EJ, Ota F, Fukui K. Detection of Streptococcus mutans by PCR amplificaction of spaP gene. J Med Microbiol 1994; 41(4): 231-235.

Hata S, Hata H, Miyasawa-Hori H, Kudo A, Mayanagi H. Quantitative detection of Streptococcus mutans in the dental plaque of Japanese preschool children by real-time PCR. Lett Appl Microbiol 2006; 42(2): 127-131.

Choi EJ, Lee SH, Kim YJ. Quantitative real-time polymerase chain reaction for Streptococcus mutans and Streptococcus sobrinus in dental plaque samples and its association with early childhood caries. Int J Paediatr Dent 2009; 19(2): 141-147.

Durán-Contreras GL, Torre-Martínez HH, de la Rosa EI, Hernández RM, de la Garza Ramos M. spaP gene of Streptococcus mutans in dental plaque and its relationship with early childhood caries. Eur J Paediatr Dent 2011; 12(4): 220-224.

Vásquez S, Lobos O, Padilla C. Presencia de genes de virulencia gtfB y spaP en Streptococcus mutans aislados desde saliva y su relación con el índice COPD y ceod. Rev Clin Periodoncia Implantol Rehabil Oral 2014; 7(2): 65-71.

Published
2016-12-16
How to Cite
Moncada-Cortés G. A., Duperat L. del C., Palma P., Corsini G., Neira M., Reyes E., Oliveira-Junior O. B., Faleiros S., Gordan V., & Yévenes I. (2016). Real-time quantitative polymerase chain reaction (QPCR) for the identification and quantification of Streptococcus Mutans in saliva and dental biofilm in children. Revista Facultad De Odontología Universidad De Antioquia, 28(1), 71-94. https://doi.org/10.17533/udea.rfo.v28n1a4