Tooth decay detection using a fiber optic sensor


  • Eberto Benjumea-Mendoza Universidad Popular del Cesar
  • Leonardo Díaz Universidad Popular del Cesar
  • César Torres Universidad Popular del Cesar



Dental caries, Optical fibers, Optical sensors


Introduction: tooth decay has become one of the most prevalent diseases worldwide, but ironically it is one of the most neglected. Currently, adequate and effective caries treatment is based on early diagnosis and procedures such as sealants, crowns, and root canal treatment. Methods: This study examined the behavior of carious and non-carious areas of critical dental units (premolars and molars) subjecting them to a wavelength of 830 nm in adult humans who agreed to a dental exam and had at least one tooth affected by dental caries. Underage persons and patients in medical treatment were excluded. After finding a behavior that helped differentiate decayed tissue from healthy areas, the used experimental system was characterized and tested in volunteers. The implemented system contains a fiber optic sensor comprised of a trifurcated fiber and a photodetector to perform optical power measurements. Results: This sensor detected 100% of dental caries samples on premolar and molar occlusal surfaces. It also showed the ability to diagnose buccal cavities. Conclusions: The results showed that caries can be identified in dental units by means of a fiber optic sensor and infrared light at 830 nm.

= 720 veces | PDF
= 521 veces|


Download data is not yet available.

Author Biographies

Eberto Benjumea-Mendoza, Universidad Popular del Cesar

Electronic Engineer, Colciencias young researcher and innovator, Grupo de Óptica e Informática, Universidad Popular del Cesar, Valledupar, Colombia

Leonardo Díaz, Universidad Popular del Cesar

Electronic Engineer, MEd in Teaching of the Exact and Natural Sciences, Adjunct Professor, Electronic Engineering Program, School of Engineering and Technology, Grupo de Óptica e Informática, Universidad Popular del Cesar, Valledupar, Colombia

César Torres, Universidad Popular del Cesar

BA in Physics, MS in Physics, Doctor in Natural Sciences, Professor, Mathematics and Physics Program, School of Basic Sciences and Education, Grupo de Óptica e Informática, Universidad Popular del Cesar, Valledupar, Colombia


Gutiérrez S. Fundamentos de ciencias básicas aplicadas a la odontología. Bogotá: Pontificia Universidad Javeriana; 2006.

Summitt J, Robbins J, Schwartz R, Hilton T. Fundamentals of operative dentistry: a contemporary approach. 3 ed. Hanover Park, IL: Quintessence Publishing Co; 2006.

Dikmen B. Icdas II criteria (international caries detection and assessment system). J Istanb Univ Fac Dent. 2015; 49(3): 63–72. DOI:

Heymann H, Swift E JR, Ritter A. Sturdevanant’s art and science of operative dentistry. St. Louis: Mosby Elsevier; 2006.

Federación Dental Internacional (FDI). El desafío de las enfermedades bucodentales: una llamada a la acción global: atlas de salud bucodental. 2 ed. Brighton, RU: Myriad; 2015.

Colombia. Ministerio de Salud y Protección Social. IV estudio nacional de salud bucal: situación de salud bucal. Bogotá: Diseñum Tremens; 2014.

Ferreira A, Zero DT. Instrumentos diagnósticos para la detección precoz de caries. J Am Dent Assoc. 2007; 2(2): 89-95

Carrillo C. Diagnóstico de lesiones incipientes de caries ¿Es este el futuro de la odontología? Rev ADM. 2010; 67(1): 13-20.

Cedillo J, Treviño E. Tecnología en el diagnóstico de caries. Rev ADM. 2007; 64(5): 211-214.

Ten-Bosch J. Light scattering and related methods in caries diagnosis. En: Stookey G. Early detection of dental caries: proceedings of the 1st. annual Indiana Conference. Indianapolis: Indiana University; 1996. p. 81-90.

Kidd E, Fejerskov O. Dental caries, the disease and its clinical management. Oxford, Reino Unido: Blackwell Munsgaard; 2003.

Kidd E. Essentials of dental caries. The disease and its management. 3 ed. New York: Oxford University Press Inc; 2005.

Henostroza-Haro G. Caries dental: principios y procedimientos para el diagnóstico. Lima: Universidad Peruana Cayetano Heredia; 2007.

Parker P, Fan P, O’Brien W, Brooks S. Detection of enamel demineralization with transillumination. Clin Prev Dent. 1987; 3(3): 12-14.

Gwinnett J. A comparison of proximal carious lesions as seen by clinical radiography, contact microradiography and light microscopy. J Am Dent Assoc. 1971; (83)5: 1078-1080.

Lussi A, Firestone A, Schoenberg A, Hotz P, Stich H. In vivo diagnosis of fissure caries using a new electrical resistance monitor. Caries Res. 1995; 29(2): 81-87. DOI:

Hibst R, Gall R. Development of a diode laser-based fluorescence caries detector. Caries Res. 1998; 32(4): 294.

De-Josselin-de-Jong E, Sunstrom F, Westerling H, Tranaeus S, Ten-Bosch J, Angmar-Månsson B. A new method for in vivo quantification of changes in initial enamel caries with laser fluorescence. Caries Res. 1995; 29(1): 2-7. DOI:

Asociación Médica Mundial. Principios éticos para las investigaciones médicas en seres humanos. Declaración de Helsinki. Finlandia: Asociación Médica Mundial; 1964.

Colombia. Ministerio de Salud. Resolución 8430 de 1993: por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. Bogotá: Minsalud; 1993.

Suarez N, Castellanos R, Vargas R, Mattos L, Torres C. Estimación de pérdidas de potencia en enlaces con fibras ópticas. Revista Colombiana de Física. 2004; 36(2). 353-357

Newport Corporation. Projects in fiber optics [Internet]. New York: Newport Corporation; 1986. Avalaible in:

Castejón I, Magán R, García C. Sistema de notación dentaria. Odontol Pediatr. 2001; 9(3): 126-128.




How to Cite

Benjumea-Mendoza, E., Díaz, L., & Torres, C. (2018). Tooth decay detection using a fiber optic sensor. Revista Facultad De Odontología Universidad De Antioquia, 29(2), 405–419.