Bone regeneration in calvarial defects of NOD.CB17-Prkdcscid/J (NOD SCID) mice from dental pulp stem cells: a systematic review
DOI:
https://doi.org/10.17533/udea.rfo.v33n2a8Keywords:
Bone regeneration, stem cells, dental pulpAbstract
Introduction: human dental pulp stem cells show a very significant osteogenic capacity, allowing the formation of new bone that is very well adapted to existing bone. The objective was to evaluate the efficacy of bone regeneration from dental pulp stem cells, analyzing in vivo studies carried out in immunocompetent NOD.CB17-Prkdcscid/J (NOD SCID) mice. Methods: we analysed studies from 2016 to 2020, found in Pubmed, ScienceDirect and Lilacs. The systematic review followed the PRISMA guidelines, the quality and risk of bias assessment was performed considering the criteria set out in the National Heart Lung and Blood Institute - NHLBI tool. Results: applying the inclusion and exclusion criteria, 6 studies were selected and evaluated, and only 2 of them were selected for review (n=1859). Data from the studies were extracted and sorted according to study details, analysis methodology and results. Conclusion: the results obtained show that there is bone regeneration by stem cells derived from dental pulp, because they promote osteogenesis and the new bone successfully joins the existing bone. In vitro analysis indicates that it is an excellent osteogenic source and in vivo studies confirm that culture media interfere with bone formation. Further studies are required to confirm bone formation by Dental Pulp Stem Cell - DPSC.
Downloads
References
Lee YC, Chan YH, Hsieh SC, Lew WZ, Feng SW. Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int J Mol Sci. 2019; 20(20): 5015.DOI: https://dx.doi.org/10.3390%2Fijms20205015
Campos JM, Sousa AC, Caseiro AR, Pedrosa SS, Pinto PO, Branquinho MV et al. Dental pulp stem cells and Bonelike® for bone regeneration in ovine model. Regen Biomater. 2019; 6(1): 49-59. DOI: https://doi.org/10.1093/rb/rby025
Collignon AM, Castillo-Dali G, Gomez E, Guilbert T, Lesieur J, Nicoletti A et al. Mouse Wnt1-CRE-RosaTomato dental pulp stem cells directly contribute to the calvarial bone regeneration process. Stem Cells. 2019; 37(5): 701-11. DOI: https://doi.org/10.1002/stem.2973
Jin Q, Yuan K, Lin W, Niu C, Ma R, Huang Z. Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential. Artif Cells Nanomedicine Biotechnol. 2019; 47(1): 1577-84. DOI: https://doi.org/10.1080/21691401.2019.1594861
Jin Z, Jake C. Bone tissue regeneration: application of mesenchymal stem cells and cellular and molecular mechanisms. Curr Stem Cell Res Ther. 2017; 12(5): 357-64. DOI: https://doi.org/10.2174/1574888x11666160921121555
Paduano F, Marrelli M, Alom N, Amer M, White LJ, Shakesheff KM et al. Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. J Biomater Sci Polym Ed. 2017; 28(8): 730-48. DOI: https://doi.org/10.1080/09205063.2017.1301770
Ercal P, Pekozer GG. A current overview of scaffold-based bone regeneration strategies with dental stem cells. En: Turksen K, editor. Cell biology and translational medicine. Vol 9: Stem cell-based therapeutic approaches in disease. Canada: Springer International Publishing; 2020 p. 61-85. DOI: https://doi.org/10.1007/5584_2020_505
Ercal P, Pekozer GG, Kose GT. Dental stem cells in bone tissue engineering: current overview and challenges. En: Turksen K, editor. Cell Biology and Translational Medicine. Vol 3: Stem cells, bio-materials and tissue engineering. Canada: Springer International Publishing; 2018 DOI: https://doi.org/10.1007/5584_2018_171
Lorusso F, Inchingolo F, Dipalma G, Postiglione F, Fulle S, Scarano A. Synthetic Scaffold/Dental Pulp Stem Cell (DPSC) tissue engineering constructs for bone defect treatment: an animal studies literature review. Int J Mol Sci. 2020; 21(24): 9765. DOI: https://doi.org/10.3390/ijms21249765
Soares IMV, Fernandes GVO, Cordeiro CL, Leite YKPC, Bezerra DO, De Carvalho MAM et al. The influence of Aloe vera with mesenchymal stem cells from dental pulp on bone regeneration: characterization and treatment of non-critical defects of the tibia in rats. J Appl Oral Sci. 2019; 27: e20180103. DOI: https://doi.org/10.1590/1678-7757-2018-0103
Song D, Xu P, Liu S, Wu S. Dental pulp stem cells expressing SIRT1 improve new bone formation during distraction osteogenesis. Am J Transl Res. 2019; 11(2): 832-43.
Pedroni ACF, Sarra G, de Oliveira NK, Moreira MS, Deboni MCZ, Marques MM. Cell sheets of human dental pulp stem cells for future application in bone replacement. Clin Oral Investig. 2019; 23(6): 2713-21. DOI: https://doi.org/10.1007/s00784-018-2630-8
Tatsuhiro F, Seiko T, Yusuke T, Reiko TT, Kazuhito S. Dental pulp stem cell-derived, scaffold-free constructs for bone regeneration. Int J Mol Sci. 2018; 19(7): 1846. DOI: https://doi.org/10.3390/ijms19071846
Dave JR, Tomar GB. Dental Tissue-derived mesenchymal stem cells: applications in tissue engineering. Crit Rev Biomed Eng. 2018; 46(5). 429-68. DOI: https://doi.org/10.1615/critrevbiomedeng.2018027342
Zhou LL, Liu W, Wu YM, Sun WL, Dörfer CE, El-Sayed KMF. Oral mesenchymal stem/progenitor cells: the immunomodulatory masters. Stem Cells Int. 2020; 2020:1327405. DOI: https://doi.org/10.1155/2020/1327405
Tsukamoto J, Naruse K, Nagai Y, Kan S, Nakamura N, Hata M et al. Efficacy of a self-assembling Peptide Hydrogel, SPG-178-Gel, for bone regeneration and three-dimensional osteogenic induction of dental pulp stem cells. Tissue Eng Part A. 2017; 23(23-24): 1394-402. DOI: https://doi.org/10.1089/ten.tea.2017.0025
Yasui T, Mabuchi Y, Morikawa S, Onizawa K, Akazawa C, Nakagawa T et al. Isolation of dental pulp stem cells with high osteogenic potential. Inflamm Regen. 2017; 37: 8. DOI: https://dx.doi.org/10.1186%2Fs41232-017-0039-4
Chalisserry EP, Nam SY, Park SH, Anil S. Therapeutic potential of dental stem cells. J Tissue Eng. 2017; 8: 2041731417702531. DOI: https://doi.org/10.1177/2041731417702531
Stuepp RT, Barros-Delben P, Modolo F, Trentin AG, Garcez RC, Biz MT. Human dental pulp stem cells in rat mandibular bone defects. Cells Tissues Organs. 2019; 207: 138-48. DOI: https://doi.org/10.1159/000502513
Leyendecker Jr A, Pinheiro CCG, Fernandes TL, Bueno DF. The use of human dental pulp stem cells for in vivo bone tissue engineering: a systematic review. J Tissue Eng. 2018; 9: 2041731417752766. DOI: https://doi.org/10.1177/2041731417752766
Nakajima K, Kunimatsu R, Ando K, Ando T, Hayashi Y, Kihara T et al. Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 2018; 497(3): 876-82. DOI: https://doi.org/10.1016/j.bbrc.2018.02.156
Cristaldi M, Mauceri R, Tomasello L, Pizzo G, Pizzolanti G, Giordano C et al. Dental pulp stem cells for bone tissue engineering: a review of the current literature and a look to the future. Regen Med. 2018; 13(2): 207-18. DOI: https://doi.org/10.2217/rme-2017-0112
Sybil D, Jain V, Mohanty S, Husain SA. Oral stem cells in intraoral bone formation. J Oral Biosci. 2020; 62(1): 36-43. DOI: https://doi.org/10.1016/j.job.2019.12.001
Chamieh F, Collignon AM, Coyac BR, Lesieur J, Ribes S, Sadoine J et al. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci Rep. 2016; 6: 38814. DOI: https://dx.doi.org/10.1038%2Fsrep38814
Yamada Y, Nakamura-Yamada S, Konoki R, Baba S. Promising advances in clinical trials of dental tissue-derived cell-based regenerative medicine. Stem Cell Res Ther. 2020; 11(1): 175. DOI: https://doi.org/10.1186/s13287-020-01683-x
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372: n71. DOI: https://doi.org/10.1136/bmj.n71
National Heart, Lung, and Blood Insitute. Study Quality Assessment Tools [Internet]. USA; NIH; [consultado el 30 de septiembre de 2021]. Disponible en: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
Sato M, Kawase-Koga Y, Yamakawa D, Fujii Y, Chikazu D. Bone regeneration potential of human dental pulp stem cells derived from elderly patients and osteo-induced by a helioxanthin derivative. Int J Mol Sci. 2020; 21(20): 7731. DOI: https://dx.doi.org/10.3390%2Fijms21207731
Fujii Y, Kawase-Koga Y, Hojo H, Yano F, Sato M, Chung UI et al. Bone regeneration by human dental pulp stem cells using a helioxanthin derivative and cell-sheet technology. Stem Cell Res Ther. 2018; 9(1):24. DOI: https://doi.org/10.1186/s13287-018-0783-7
Martin-Del-Campo M, Rosales-Ibañez R, Alvarado K, Sampedro JG, Garcia-Sepulveda CA, Deb S et al. Strontium folate loaded biohybrid scaffolds seeded with dental pulp stem cells induce in vivo bone regeneration in critical sized defects. Biomater Sci. 2016; 4(11): 1596-604. DOI: https://doi.org/10.1039/c6bm00459h
Wongsupa N, Nuntanaranont T, Kamolmattayakul S, Thuaksuban N. Assessment of bone regeneration of a tissue-engineered bone complex using human dental pulp stem cells/poly(ε-caprolactone)-biphasic calcium phosphate scaffold constructs in rabbit calvarial defects. J Mater Sci Mater Med. 2017; 28(5): 77. DOI: https://doi.org/10.1007/s10856-017-5883-x
Yasui T, Mabuchi Y, Toriumi H, Ebine T, Niibe K, Houlihan DD et al. Purified human dental pulp stem cells promote osteogenic regeneration. J Dent Res. 2016; 95(2): 206-14. DOI: https://doi.org/10.1177/0022034515610748
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Facultad de Odontología Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice
Copyright comprises moral and patrimonial rights.
1. Moral rights: are born at the moment of the creation of the work, without the need to register it. They belong to the author in a personal and unrelinquishable manner; also, they are imprescriptible, unalienable and non negotiable. Moral rights are the right to paternity of the work, the right to integrity of the work, the right to maintain the work unedited or to publish it under a pseudonym or anonymously, the right to modify the work, the right to repent and, the right to be mentioned, in accordance with the definitions established in article 40 of Intellectual property bylaws of the Universidad (RECTORAL RESOLUTION 21231 of 2005).
2. Patrimonial rights: they consist of the capacity of financially dispose and benefit from the work trough any mean. Also, the patrimonial rights are relinquishable, attachable, prescriptive, temporary and transmissible, and they are caused with the publication or divulgation of the work. To the effect of publication of articles in the journal Revista de la Facultad de Odontología, it is understood that Universidad de Antioquia is the owner of the patrimonial rights of the contents of the publication.
The content of the publications is the exclusive responsibility of the authors. Neither the printing press, nor the editors, nor the Editorial Board will be responsible for the use of the information contained in the articles.
I, we, the author(s), and through me (us), the Entity for which I, am (are) working, hereby transfer in a total and definitive manner and without any limitation, to the Revista Facultad de Odontología Universidad de Antioquia, the patrimonial rights corresponding to the article presented for physical and digital publication. I also declare that neither this article, nor part of it has been published in another journal.
Open Access Policy
The articles published in our Journal are fully open access, as we consider that providing the public with free access to research contributes to a greater global exchange of knowledge.
Creative Commons License
The Journal offers its content to third parties without any kind of economic compensation or embargo on the articles. Articles are published under the terms of a Creative Commons license, known as Attribution – NonCommercial – Share Alike (BY-NC-SA), which permits use, distribution and reproduction in any medium, provided that the original work is properly cited and that the new productions are licensed under the same conditions.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.