Nanocomplejo de fosfopéptido de caseína-fosfato de calcio amorfo (CPP-ACP) en odontología: estado del arte

Autores/as

  • Cristhian Camilo Madrid-Troconis Universidad Estadual de Campinas
  • Sthefanie del Carmen Perez-Puello Universidad Estadual de Campinas (FOP-UNICAMP)

DOI:

https://doi.org/10.17533/udea.rfo.v30n2a10

Palabras clave:

Nanocomplejo de fosfopéptido de caseína-fosfato de calcio amorfo, Desmineralización dental, Remineralización dental, Caries dental, Sensibilidad de la dentina

Resumen

La saliva y agentes externos que contienen diferentes concentraciones de fluoruro de sodio (NaF) favorecen el proceso de remineralización dental. No obstante, estos recursos podrían no ser suficientes para contrarrestar los múltiples factores involucrados en el proceso de caries dental, especialmente en pacientes con alto riesgo. Existen alternativas que han sido ampliamente investigadas, como el fosfopéptido de caseína-fosfato de calcio amorfo (CPP-ACP) que aporta iones esenciales como fosfato y calcio, actuando como coadyuvante en el proceso de remineralización. Los fabricantes de productos basados en CPP-ACP también sugieren que este es capaz de generar efectos desensibilizantes. Este nanocomplejo ha sido utilizado de forma experimental con algunos cementos dentales y en sistemas adhesivos, pero es importante esclarecer los efectos de dicha incorporación y las ventajas remineralizantes/desensibilizantes que ofrece esta alternativa. El objetivo del presente artículo de revisión de tema consistió en presentar el estado del arte sobre el nanocomplejo CPP-ACP. En términos de prevención de caries dental, esta opción remineralizante no es superior al NaF. El nanocomplejo ejerce acción desensibilizante dental, pero esta es transitoria e inferior a otras alternativas como nitrato de potasio o NaF. La incorporación experimental de CPP-ACP en cementos dentales debe ser controlada para no comprometer las propiedades fisicoquímicas del material. La utilización de productos dentales a base de este nanocomplejo como pretratamiento de la superficie dental puede disminuir la resistencia de unión de materiales adhesivos, pero este efecto es material-dependiente.

|Resumen
= 1862 veces | PDF (ENGLISH)
= 710 veces| | TABLAS
= 0 veces| | FIGURAS
= 0 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Cristhian Camilo Madrid-Troconis, Universidad Estadual de Campinas

Departamento de Odontología Restauradora (Area Materiales Dentales). Candidato a Doctor (Ph.D) en Materiales Dentales, Magíster en Materiales Dentales, Facultad de Odontologia, Universidad Estadual de Campinas (FOP-UNICAMP), São Paulo, Brasil, Odontólogo Universidad de Cartagena, Colombia.

Sthefanie del Carmen Perez-Puello, Universidad Estadual de Campinas (FOP-UNICAMP)

Departamento de Odontología Social (Area Salud Colectiva). Candidata a Magíster (Ms.C) en Odontología, Area Salud Colectiva, Facultad de Odontologia, Universidad Estadual de Campinas (FOP-UNICAMP), São Paulo, Brasil, Residente de especialización atención interdisciplinar a la primera infancia, Odontóloga Universidad de Cartagena, Colombia.

Citas

Rošin-Grget K, Peroš K, Sutej I, Bašić K. The cariostatic mechanisms of fluoride. Acta Med Acad. 2013; 42(2): 179-88. DOI: https://doi.org/10.5644/ama2006-124.85

Takahashi N, Nyvad B. Caries ecology revisited: microbial dynamics and the caries process. Caries Res. 2008; 42(6): 409-18. DOI: https://doi.org/10.1159/000159604

Strużycka I. The oral microbiome in dental caries. Pol J Microbiol. 2014; 63(2): 127-35

Dogra S, Bhayya D, Arora R, Singh D, Thakur D. Evaluation of physio-chemical properties of saliva and comparison of its relation with dental caries. J Indian Soc Pedod Prev Dent. 2013; 31(4): 221-24. DOI: https://doi.org/10.4103/0970-4388.121816

Ccahuana-Vásquez RA, Cury JA. S. mutans biofilm model to evaluate antimicrobial substances and enamel demineralization. Braz Oral Res. 2010; 24(2): 135-41

Takeuchi R, Kawamura K, Kawamura S, Endoh M, Tomiki S, Taguchi C et al. Effect of school-based fluoride mouth-rinsing on dental caries incidence among schoolchildren in the Kingdom of Tonga. J Oral Sci. 2012; 54(4): 343-47

Cury JA,Tenuta LM. How to maintain a cariostatic fluoride concentration in the oral environment. Adv Dent Res. 2008; 20(1): 13-6. DOI: https://doi.org/10.1177/154407370802000104

Inkielewicz-Stepniak I, Santos-Martinez MJ, Medina C, Radomski MW. Pharmacological and toxicological effects of co-exposure of human gingival fibroblasts to silver nanoparticles and sodium fluoride. Int J Nanomedicine. 2014; 2(9): 1677-87. DOI: https://dx.doi.org/10.2147%2FIJN.S59172

Whelton HP, Ketley CE, McSweeney F, O’Mullane DM. A review of fluorosis in the European Union: prevalence, risk factors and aesthetic issues. Community Dent Oral Epidemiol. 2004; 32 (Suppl 1): 9-18. DOI: https://doi.org/10.1111/j.1600-0528.2004.00134.x

Azevedo MS, Goettems ML, Torriani DD, Demarco FF. Factors associated with dental fluorosis in school children in southern Brazil: a cross-sectional study. Braz Oral Res. 2014; 28(1): 1-7

Bayram M, Kusgoz A, Yesilyurt C3, Nur M. Effects of casein phosphopeptide-amorphous calcium phosphate application after interproximal stripping on enamel surface: an in-vivo study. Am J Orthod Dentofacial Orthop. 2017; 151(1): 167-73. DOI: https://doi.org/10.1016/j.ajodo.2016.06.033

Bajaj M, Poornima P, Praveen S, Nagaveni NB, Roopa KB, Neena IE et al. Comparison of CPP-ACP, tri-calcium phosphate and hydroxyapatite on remineralization of artificial caries like lesions on primary enamel: an in vitro study. J Clin Pediatr Dent. 2016; 40(5): 404-9. DOI: https://doi.org/10.17796/1053-4628-40.5.404

Pulido MT, Wefel JS, Hernandez MM, Denehy GE, Guzman-Armstrong S, Chalmers JM, et al. The inhibitory effect of MI paste, fluoride and a combination of both on the progression of artificial caries-like lesions in

enamel. Oper Dent. 2008; 33(5): 550-55. DOI: https://doi.org/10.2341/07-136

Güçlü ZA, Alaçam A, Coleman NJ. A 12-week assessment of the treatment of white spot lesions with CPP-ACP paste and/or fluoride varnish. Biomed Res Int. 2016; 2016: 8357621. DOI: https://doi.org/10.1155/2016/8357621

Miglani S, Aggarwal V, Ahuja B. Dentin hypersensitivity: recent trends in management. J Conserv Dent. 2010; 13(4): 218-24. DOI: https://doi.org/10.4103/0972-0707.73385

Thepyou R, Chanmitkul W, Thanatvarakorn O, Hamba H, Chob-Isara W, Trairatvorakul C et al. Casein phosphopeptide-amorphous calcium phosphate and glass ionomer show distinct effects in the remineralization of proximal artificial caries lesion in situ. Dent Mater J. 2013; 32(4): 648–65

Adebayo OA, Burrow MF, Tyas MJ. Resin-dentine interfacial morphology following CPP-ACP treatment. J Dent. 2010; 38(2): 96-105. DOI: https://doi.org/10.1016/j.jdent.2009.09.007

Reynolds EC. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J Dent Res. 1997; 76(9): 1587-95. DOI: https://doi.org/10.1177/00220345970760

Meyer-Lueckel H, Wierichs RJ, Schellwien T, Paris S. Remineralizing efficacy of a CPP-ACP cream on enamel caries lesions in situ. Caries Res. 2015; 49(1): 56-62. DOI: https://doi.org/10.1159/000363073

Nongonierma AB, Fitzgerald RJ. Biofunctional properties of caseinophosphopeptides in the oral cavity. Caries Res. 2012; 46(3): 234-67. DOI: https://doi.org/10.1159/000338381

Cochrane NJ, Reynolds EC. Calcium phosphopeptides – mechanisms of action and evidence for clinical efficacy. Adv Dent Res. 2012; 24(2): 41-47. DOI: https://doi.org/10.1177/0022034512454294

Shen P, Manton DJ, Cochrane NJ, Walker GD, Yuan Y, Reynolds C et al. Effect of added calcium phosphate on enamel remineralization by fluoride in a randomized controlled in situ trial. J Dent. 2011; 39(7): 518-25.

DOI: https://doi.org/10.1016/j.jdent.2011.05.002

Hegde AM, Naik N, Kumari S Comparison of salivary calcium, phosphate and alkaline phosphatase levels in children with early childhood caries after administration of milk, cheese and GC tooth mousse: an in vivo study. J Clin Pediatr Dent. 2014; 38(4): 318-25

Cross KJ, Huq NL, Reynolds EC. Casein phosphopeptides in oral health, chemistry and clinical applications. Curr Pharm Design. 2007; 13(8): 793-800

Mathias J, Kavitha S, Mahalaxmi S. A comparison of surface roughness after micro abrasion of enamel with and without using CPP-ACP: an in vitro study. J Conserv Dent. 2009; 12(1): 22-25

Giulio AB, Matteo Z, Serena IP, Silvia M, Luigi C. In vitro evaluation of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) effect on stripped enamel surfaces. A SEM investigation. J Dent. 2009; 37(3): 228-32. DOI: https://doi.org/10.1016/j.jdent.2008.11.015

Mayne RJ, Cochrane NJ, Cai F, Woods MG, Reynolds EC. In-vitro study of the effect of casein phosphopeptide amorphous calcium fluoride phosphate on iatrogenic damage to enamel during orthodontic adhesive removal. Am J Orthod Dentofacial Orthop. 2011; 139(6): e543-51. DOI: https://doi.org/10.1016/j.ajodo.2010.09.027

Lata S, Varghese NO, Varughese JM. Remineralization potential of fluoride and amorphous calcium phosphate-casein phosphopeptide on enamel lesions: an in vitro comparative evaluation. J Conserv Dent. 2010; 13(1): 42-6. DOI: https://doi.org/10.4103/0972-0707.62634

Oliveira GM, Ritter AV, Heymann HO, Swift E Jr, Donovan T, Brock G et al. Remineralization effect of CPP-ACP and fluoride for white spot lesions in vitro. J Dent. 2014; 42(12): 1592-602

Chokshi K, Chokshi A, Konde S, Shetty SR, Chandra KN, Jana S et al. An in vitro comparative evaluation of three remineralizing agents using confocal microscopy. J Clin Diagn Res. 2016; 10(6): ZC39-42. DOI: https://doi.org/10.7860/JCDR/2016/18191.7984

Vyavhare S, Sharma DS, Kulkarni VK. Effect of three different pastes on remineralization of initial enamel lesion: an in vitro study. J Clin Pediatr Dent. 2015; 39(2): 149-60

Srinivasan N, Kavitha M, Loganathan SC. Comparison of the remineralization potential of CPP-ACP and CPP-ACP with 900 ppm fluoride on eroded human enamel: An in situ study. Arch Oral Biol. 2010; 55(7):

-44. DOI: https://doi.org/10.1016/j.archoralbio.2010.05.002

Shetty S, Hedge MN, Bopanna TP. Enamel remineralization assessment after treatment with three different remineralizing agents using surface microhardness: An in vitro study. J Conserv Dent. 2014; 17(1): 49-52.

DOI: https://doi.org/10.4103/0972-0707.124136

Jayarajan J, Janardhanam P, Jayakumar P, Deepika. Efficacy of CPP-ACP and CPP-ACPF on enamel remineralization—an in vitro study using scanning electron microscope and DIAGNOdent. Indian J Dent Res. 2011; 22(1): 77-82. DOI: https://doi.org/10.4103/0970-9290.80001

Patil N, Choudhari S, Kulkarni S, Joshi SR. Comparative evaluation of remineralizing potential of three agents on artificially demineralized human enamel: an in vitro study. J Conserv Dent. 2013; 16(2): 116-20. DOI: https://doi.org/10.4103/0972-0707.108185

Somasundaram P, Vimala N, Mandke LG. Protective potential of casein phosphopeptide amorphous calcium phosphate containing paste on enamel surfaces. J Conserv Dent. 2013; 16(2): 152-56. DOI: https://doi.org/10.4103/0972-0707.108199

Cochrane NJ, Shen P, Yuan, Y, Reynolds EC. Ion release from calcium and fluoride containing dental varnishes. Aust Dent J. 2014; 59(1): 100-5. DOI: https://doi.org/10.1111/adj.12144

De Alencar CR, Magalhães AC, de Andrade Moreira Machado MA, de Oliveira TM, Honório HM, Rios D. In situ effect of a commercial CPP-ACP chewing gum on the human enamel initial erosion. J Dent. 2014; 42(11): 1502-07. DOI: https://doi.org/10.1016/j.jdent.2014.08.008

Cao Y, Mei ML, Xu J, Lo EC, Li Q, Chu CH. Biomimetic mineralisation of phosphorylated dentine by CPPACP. J Dent. 2013; 41(9): 818-25. DOI: https://doi.org/10.1016/j.jdent.2013.06.008

Brannstrom M. The hydrodynamic theory of dentinal pain: sensation in preparations, caries, and the dentinal crack syndrome. J Endod. 1986; 12(10): 453-57. DOI: https://doi.org/10.101/S0099-2399(86)80198-4

Li R, Li Y, Chen J, Zhou Z, Morrison BM Jr, Panagakos FS. Efficacy of a desensitizing toothpaste containing arginine and calcium carbonate on dentin surface pore structure and dentin morphology. Am J Dent. 2012; 25(4): 210-14

Gandolfi MG, Silvia F, H PD, Gasparotto G, Carlo P. Calcium silicate coating derived from Portland cement as treatment for hypersensitive dentine. J Dent. 2008; 36(8): 565-78. DOI: https://doi.org/10.1016/j.jdent.2008.03.012

Wang Z, Ma X, Jiang T, Wang Y, Feng Y, Li R. The dentin tubule occlusion effects of desensitizing agents and the stability against acids and brushing challenges. Am J Dent. 2015; 28(3): 128-32

Rahiotis C, Vougiouklakis G, Eliades G. Characterization of oral films formed in the presence of a CPP-ACP agent: an in situ study. J Dent. 2008; 36(4): 272-80. DOI: https://doi.org/10.1016/j.jdent.2008.01.005

Caruana PC, Mulaify SA, Moazzez R, Bartlett D. The effect of casein and calcium containing paste on plaque pH following a subsequent carbohydrate challenge. J Dent. 2009; 37(7): 522-6. DOI: https://doi.

org/10.1016/j.jdent.2009.03.010

Erdem AP, Sepet E, Avshalom T, Gutkin V, Steinberg D. Effect of CPP-ACP and APF on streptococcus mutans biofilm: a laboratory study. Am J Dent. 2011; 24(2): 119-23

Dashper SG, Catmull DV, Liu SW, Myroforidis H, Zalizniak I, Palamara JE et al. Casein phosphopeptideamorphous calcium phosphate reduces streptococcus mutans biofilm development on glass ionomercement and disrupts established biofilms. PLoS One. 2016; 11(9): e0162322. DOI: https://doi.org/10.1371/journal.pone.0162322

Sakr AK, El Karargy AA, Sherif MM. A short-term clinical study on antimicrobial effects of recaldent (CPPACP). Dent Mater. 2009; 25(5): 11-2. DOI: http://dx.doi.org/10.1016/j.dental.2009.01.021

Ekstrand KR, Ricketts DN, Kidd EA. Occlusal caries: pathology, diagnosis and logical management. Dent Update. 2001; 28(8): 380-87. DOI: https://doi.org/10.12968/denu.2001.28.8.380

Abdullah Z, John J. Minimally invasive treatment of white spot lesions: a systematic review. Oral Health Prev Dent. 2016; 14(3): 197-205. DOI: https://doi.org/10.3290/j.ohpd.a35745

Memarpour M, Fakhraei E, Dadaein S, Vossoughi M. Efficacy of fluoride varnish and casein phosphopeptideamorphous calcium phosphate for remineralization of primary teeth: a randomized clinical trial. Med Princ

Pract. 2015; 24(3): 231-37. DOI: https://doi.org/10.1159/000379750

Andersson A, Sköld-Larsson K, Hallgren A, Petersson LG, Twetman S. Effect of a dental cream containing amorphous cream phosphate complexes on white spot lesion regression assessed by laser fluorescence.

Oral Health Prev Dent. 2007; 5(3): 229-33

Lucchese A, Gherlone E. Prevalence of white-spot lesions before and during orthodontic treatment with fixed appliances. Eur J Orthod. 2013; 35(5): 664-68. DOI: https://doi.org/10.1093/ejo/cjs070

Enaia M, Bock N, Ruf S. White-spot lesions during multibracket appliance treatment: a challenge for clinical excellence. Am J Orthod Dentofacial Orthop. 2011; 140(1): e17-24. DOI: https://doi.org/10.1016/j.ajodo.2010.12.016

Bröchner A, Christensen C, Kristensen B, Tranæus S, Karlsson L, Sonnesen L et al. Treatment of postorthodontic white spot lesions with casein phosphopeptide-stabilised amorphous calcium phosphate. Clin Oral Investig. 2011; 15(3): 369-73. DOI: https://doi.org/10.1007/s00784-010-0401-2

Lopatiene K, Borisovaite M, Lapenaite E. Prevention and treatment of white spot lesions during and after treatment with fixed orthodontic appliances: a systematic literature review. J Oral Maxillofac Res. 2016;

(2): e1. DOI: https://doi.org/10.5037/jomr.2016.7201

Carr AJ, Ng WF, Figueiredo F, Macleod RI, Greenwood M, Staines K. Sjögren’s syndrome—an update for dental practitioners. Br Dent J. 2012; 213(7): 353-57. DOI: https://doi.org/10.1038/sj.bdj.2012.890

Hong CH, Napeñas JJ, Hodgson BD, Stokman MA, Mathers-Stauffer V, Elting LS et al. A systematic review of dental disease in patients undergoing cancer therapy. Support Care Cancer. 2010; 18(8): 1007-21. DOI:

https://doi.org/10.1007/s00520-010-0873-2

Peric T, Markovic D, Petrovic B, Radojevic V, Todorovic T, Radicevic BA et al. Efficacy of pastes containing CPP-ACP and CPP-ACPF in patients with Sjögren’s syndrome. Clin Oral Investig. 2015; 19(9): 2153-65. DOI: https://doi.org/10.1007/s00784-015-1444-1

Katsura K, Soga M, Abe E, Matsuyama H, Aoyama H, Takafumi Hayashi T. Effects of casein phosphopeptide–amorphous calcium phosphate with sodium fluoride on root surface conditions in head and neck radiotherapy patients. Oral Radiol. 2016; 32: 105-10. DOI: https://doi.org/10.1007/s11282-015-0218-4

Sim CP, Wee J, Xu Y, Cheung YB, Soong YL, Manton DJ. Anti-caries effect of CPP-ACP in irradiated nasopharyngeal carcinoma patients. Clin Oral Investig. 2015; 19(5): 1005-11. DOI: https://doi.org/10.1007/

s00784-014-1318-y

Özdas DÖ, Tuna EB, Yilmaz EY, Aytepe Z. Casein phosphopeptide-amorphous calcium phosphate (CPPACP) may be an alternative preventive therapy in children with cerebral palsy. Oral Health Prev Dent. 2015; 13(5): 11-27. DOI: https://doi.org/10.3290/j.ohpd.a33090

Davari A, Ataei E, Assarzadeh H. Dentin hypersensitivity: etiology, diagnosis and treatment: a literature review. J Dent (Shiraz). 2013; 14(3): 136-45

Mahesuti A, Duan YL, Wang G, Cheng XR, Matis BA. Short-term efficacy of agents containing KNO3 or CPP-ACP in treatment of dentin hypersensitivity. Chin J Dent Res. 2014; 17(1): 43-47

Madhavan S, Nayak M, Shenoy, Shetty R, Prasad K. Dentinal hypersensitivity: a comparative clinical evaluation of CPP-ACP F, sodium fluoride, propolis, and placebo. J Conserv Dent. 2012; 15(4): 315-18

He LB, Shao MY, Tan K, Xu X, Li JY. The effects of light on bleaching and tooth sensitivity during in-office vital bleaching: a systematic review and meta-analysis. J Dent. 2013; 40(8): 644-53. DOI: https://doi.org/10.1016/j.jdent.2012.04.010

Nanjundasetty JK, Ashrafulla M. Efficacy of desensitizing agents on postoperative sensitivity following an in-office vital tooth bleaching: a randomized controlled clinical trial. J Conserv Dent. 2016; 19(3): 207-11.

DOI: https://doi.org/10.4103/0972-0707.181927

Maghaireh G, Alzraikat H, Guidoum A. Assessment of the effect of casein phosphopeptide- amorphous calcium phosphate on postoperative sensitivity associated with in-office vital tooth whitening. Oper Dent.

; 39(3): 239-47. DOI: https://doi.org/10.2341/12-527-C

Henry RK, Carkin M. The effect of gum chewing on sensitivity associated with in-office whitening procedures. Int J Dent Hyg. 2015; 13(4): 308-14. DOI: https://doi.org/10.1111/idh.12136

Tang B, Millar BJ. Effect of chewing gum on tooth sensitivity following whitening. Br Dent J. 2010; 208(12):571-7. DOI: https://doi.org/10.1038/sj.bdj.2010.500

Matis BA, Cochran MA, Eckert GJ, Matis JI. In vivo study of two carbamide peroxide gels with different desensitizing agents. Oper Dent. 2007; 32(6): 549-55. DOI: https://doi.org/10.2341/07-10

Cunha AG, De Vasconcelos AA, Borges BC, Vitoriano O, Alves-Junior C, Machado CT et al. Efficacy of in-office bleaching techniques combined with the application of a casein phosphopeptide-amorphous calcium phosphate paste at different moments and its influence on enamel surface properties. Microsc Res Tech. 2012; 75(8): 1019-25. DOI: https://doi.org/10.1002/jemt.22026

Borges BC, Borges JS, de Melo CD, Pinheiro IV, Santos AJ, Braz R et al. Efficacy of a novel at-home bleaching technique with carbamide peroxides modified by CPP-ACP and its effect on the microhardness of bleached enamel. Oper Dent. 2011; 36(5): 521-28. DOI: https://doi.org/10.2341/11-013-L

Manton DJ, Bhide R, Hopcraft MS, Reynolds EC. Effect of ozone and tooth mousse on the efficacy of peroxide bleaching. Aust Dent J. 2008; 53(2): 128-32. DOI: https://doi.org/10.1111/j.1834-7819.2008.00021.x

Mickenautsch S, Yengopal V. Caries-preventive effect of high-viscosity glass ionomer and resin-based fissure sealants on permanent teeth: a systematic review of clinical trials. PLoS One 2016; 11(1): e0146512. DOI: https://doi.org/10.1371/journal.pone.0146512

Raggio DP, Tedesco TK, Calvo AF, Braga MM. Do glass ionomer cements prevent caries lesions in margins of restorations in primary teeth?: a systematic review and meta-analysis. J Am Dent Assoc. 2016; 147(3):

-85. DOI: https://doi.org/10.1016/j.adaj.2015.09.016

Al Zraikat H, Palamara JE, Messer HH, Burrow MF, Reynolds EC. The incorporation of casein phosphopeptideamorphous calcium phosphate into a glass ionomer cement. Dent Mater. 2011; 27(3): 235-43. DOI:

https://doi.org/10.1016/j.dental.2010.10.008

Mazzaoui SA, Burrow MF, Tyas MJ, Dashper SG, Eakins D, Reynolds EC. Incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass-ionomer cement. J Dent Res. 2003; 82(11): 914-8. DOI: https://doi.org/10.1177/154405910308201113

Wong RH, Palamara JE, Wilson PR, Reynolds EC, Burrow MF. Effect of CPP-ACP addition on physical properties of zinc oxide non-eugenol temporary cements. Dent Mater. 2011; 27(4): 329–38. DOI: https://doi.org/10.1016/j.dental.2010.11.011

Bahari M, Savadi Oskoee S, Kimyai S, Pouralibaba F, Farhadi F, Norouzi M. Effect of casein phosphopeptideamorphous calcium phosphate treatment on microtensile bond strength to carious affected dentin using two adhesive strategies. J Dent Res Dent Clin Dent Prospects. 2014; 8(3): 141-7. DOI: https://doi.org/10.5681/joddd.2014.026

Al-Kawari, HM, Al-Jobair AM. Effect of different preventive agents on bracket shear bond strength: in vitro study. BMC Oral Health. 2014; 14: 28

Ladhe KA, Sastri MR, Madaan JB, Vakil KK. Effect of remineralizing agents on bond strength of orthodontic brackets: an in vitro study. Prog Orthod. 2014; 15(1): 28. DOI: https://doi.org/10.1186/s40510-014-0028-y

Park SY, Cha JY, Kim KN, Hwang CJ. The effect of casein phosphopeptide amorphous calcium phosphate on the in vitro shear bond strength of orthodontic brackets. Korean J Orthod. 2013; 43(1): 23-8. DOI:

https://doi.org/10.4041/kjod.2013.43.1.23

Yang H, Pei D, Chen Z, Lei J, Zhou L, Huang C. Effects of the application sequence of calcium-containing desensitising pastes during etch-and-rinse adhesive restoration. J Dent. 2014; 42(9): 1115-23. DOI: https://

doi.org/10.1016/j.jdent.2014.03.018

Shadman N, Ebrahimi SF, Shoul MA, Sattari H. In vitro evaluation of casein phosphopeptide-amorphous calcium phosphate effect on the shear bond strength of dental adhesives to enamel. Dent Res J (Isfahan). 2015; 12(2): 167-72

Borges BC, Souza-Junior EJ, da Costa Gde F, Pinheiro IV, Sinhoreti MA, Braz R et al. Effect of dentin pretreatment with a casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste on dentin bond strength in tridimensional cavities. Acta Odontol Scand. 2013; 71(1): 271-7. DOI: https://doi.org/10.3109/00016357.2012.671364

Borges BC, Catelan A, Sasaki RT, Ambrosano GM, Reis AF, Aguiar FH. Effect of the application of a casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste and adhesive systems on bond durability

of a fissure sealant. Odontology. 2013; 101(1): 52-9. DOI: https://doi.org/10.1007/s10266-012-0062-5

Sattabanasuk V, Burrow MF, Shimada Y, Tagami J. Bonding of resin luting cements to dentine after casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) treatment. Int J Adhes Adhes. 2014; 54: 93-9.

DOI: https://doi.org/10.1016/j.ijadhadh.2014.05.008

Descargas

Archivos adicionales

Publicado

2019-10-21

Cómo citar

Madrid-Troconis, C. C., & Perez-Puello, S. del C. (2019). Nanocomplejo de fosfopéptido de caseína-fosfato de calcio amorfo (CPP-ACP) en odontología: estado del arte. Revista Facultad De Odontología Universidad De Antioquia, 30(2), 248–263. https://doi.org/10.17533/udea.rfo.v30n2a10