Falla por fatiga de limas NiTi para endodoncia: revisión exploratoria de cobertura temática
DOI:
https://doi.org/10.17533/udea.rfo.v34n1a6Palabras clave:
Níquel-titanio, Endodoncia, Fatiga, Revisión de literaturaResumen
Introducción: las limas de Níquel-Titanio (NiTi) utilizadas en endodoncia están hechas de un material hiperelástico con memoria de forma. Sin embargo, estas limas sufren fractura repentina durante el tratamiento, lo cual se considera un pronóstico desfavorable. Se han realizado diversos estudios para establecer la resistencia a la fatiga de limas, y determinar cuál marca es mejor. Aunque se han establecido los
mecanismos de falla más comunes para las limas de endodoncia motorizadas, la información se encuentra dispersa, dificultando la definición de tendencias claras de investigación. Métodos: se realizó una revisión de cobertura temática utilizando las bases de datos Scopus, Dimensions.ai, Web of Science y Science Direct, para responder a preguntas orientadoras relacionadas con el mecanismo de fractura predominante en las limas NiTi, tipos de pruebas y equipos utilizados para la experimentación e identificar los autores más activos en el área. Resultados: utilizando términos generales de búsqueda, se encontraron 435 trabajos de investigación. Finalmente se seleccionaron 75, tras eliminar duplicados y aplicar criterios de exclusión. Conclusiones: a partir de la revisión panorámica de literatura y empleando algunos indicadores bibliométricos, se identificaron los mecanismos de falla más comunes para las limas rotatorias y reciprocantes. Se obtuvo información sobre ensayos mecánicos y los montajes más utilizados para las limas de endodoncia. Se identificaron los autores más activos en el área y su nacionalidad. Por último, se sugieren oportunidades de investigación para generar un conocimiento exhaustivo sobre la falla de las limas NiTi.
Descargas
Citas
Carvalho A, Freitas M, Reis L, Montalvão D, Fonte M. Rotary fatigue testing to determine the fatigue life of NiTi alloy wires: an experimental and numerical analisys. Procedia Struct Integr. 2016; 1: 34-41. DOI: https://doi.org/10.1016/j.prostr.2016.02.006
Marques Ferreira M, Rebelo D, Caramelo F, Carrilho E, Loureiro M. In vitro evaluation of wear and canal transportation using reciprocating instruments: RECIPROC® vs WaveOne® files. Rev Port Estomatol Med Dent e Cir Maxilofac. 2013; 54(3): 117-23. DOI: https://doi.org/10.1016/j.rpemd.2013.04.001
Duque JA, Bramante CM, Duarte MAH, Alcalde MP, Silva EJNL, Vivan RR. Cyclic fatigue resistance of Nickel-Titanium reciprocating instruments after simulated clinical use. J Endod. 2020; 46(11): 1771-5. DOI: https://doi.org/10.1016/j.joen.2020.08.010
Sjogren U, Hagglund B, Sundqvist G, Wing K. Factors affecting the long-term results of endodontic treatment. J Endod. 1990; 16(10): 498-504. DOI: https://doi.org/10.1016/s0099-2399(07)80180-4
Mohammadi Z, Soltani MK, Shalavi S, Asgary S. A review of the various surface treatments of NiTi instruments. Iran Endod J. 2014; 9(4): 235-40.
Zinelis S, Darabara M, Takase T, Ogane K, Papadimitriou GD. The effect of thermal treatment on the resistance of nickel-titanium rotary files in cyclic fatigue. Oral Surgery Oral Med Oral Pathol Oral Radiol Endodontology. 2007; 103(6): 843-7. DOI: https://doi.org/10.1016/j.tripleo.2006.12.026
Barbosa FOG, Ponciano Gomes JAdaC, de Araújo MCP. Fractographic analysis of K3 nickel-titanium rotary instruments submitted to different modes of mechanical loading. J Endod. 2008; 34(8): 994-8. DOI: https://doi.org/10.1016/j.joen.2008.05.013
Inan U, Gonulol N. Deformation and fracture of Mtwo Rotary Nickel-Titanium instruments after clinical use. J Endod. 2009; 35(10): 1396-9. DOI: https://doi.org/10.1016/j.joen.2009.06.014
Pirani C, Cirulli PP, Chersoni S, Micele L, Ruggeri O, Prati C. Cyclic fatigue testing and metallographic analysis of nickel-titanium rotary instruments. J Endod. 2011; 37(7): 1013-6. DOI: https://doi.org/10.1016/j.joen.2011.04.009
Legrand V, Moyne S, Pino L, Chirani SA, Calloch S, Chevalier V, et al. Mechanical behavior of a NiTi endodontic file during insertion in an anatomic root canal using numerical simulations. J Mater Eng Perform. 2015; 24(12): 4941-7. DOI: http://dx.doi.org/10.1007/s11665-015-1799-0
Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G. A review of cyclic fatigue testing of Nickel-Titanium rotary instruments. J Endod. 2009; 35(11): 1469-76. DOI: https://doi.org/10.1016/j.joen.2009.06.015
Cheung GSP. Instrument fracture: mechanisms, removal of fragments, and clinical outcomes. Endod Top. 2009; 16(1): 1-26. DOI: https://doi.org/10.1111/j.1601-1546.2009.00239.x
Ashrafi MJ, Arghavani J, Naghdabadi R, Auricchio F. A three-dimensional phenomenological constitutive model for porous shape memory alloys including plasticity effects. J Intell Mater Syst Struct. 2015; 27(5): 608-24. DOI: https://doi.org/10.1177%2F1045389X15575085
Karamooz-Ravari MR, Dehghani R. The effects of shape memory alloys’ tension–compression asymmetryon NiTi endodontic files’ fatigue life. Proc Inst Mech Eng Part H J Eng Med. 2018; 232(5): 437-45. DOI: https://doi.org/10.1177/0954411918762020
Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol. 2018; 18.
Sucharew M, Macaluso M. Methods for research evidence synthesis: the scoping review approach. J Hosp Med. 2019; 14(7): 416-8. DOI: https://doi.org/10.12788/jhm.3248
Waltman L, Jan van Eck N. Citation-based clustering of publications using CitNetExplorer and VOSviewer.
Scientometrics. 2017; 111. DOI: https://doi.org/10.1007/s11192-017-2300-7
Dederich DN, ZAkariasen KL. The effects of cyclical axial motion on rotary endodontic instrument fatigue. Oral Surg Oral Med Oral Pathol. 1986; 61(2): 192-6. DOI: https://doi.org/10.1016/0030-4220(86)90186-6
Haïkel Y, Serfaty R, Bateman G, Senger B, Allemann C. Dynamic and cyclic fatigue of engine-driven rotary Nickel-Titanium endodontic instruments. J Endod. 1999; 25(6): 434-40. DOI: https://doi.org/10.1016/s0099-2399(99)80274-x
Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod. 2000; 26(3): 161-5. DOI: https://doi.org/10.1097/00004770-200003000-00008
Craveiro De Melo MC, De Azevedo Bahia MG, Buono VTL. Fatigue resistance of engine-driven rotary nickeltitanium endodontic instruments. J Endod. 2002; 28(11): 765-9. DOI: https://doi.org/10.1097/00004770-200211000-00005
Zinelis S, Margelos J. Failure mechanism of hedstroem endodontic files in vivo. J Endod. 2002; 28(6): 471-3. DOI: https://doi.org/10.1097/00004770-200206000-00014
Kuhn G, Jordan L. Fatigue and mechanical properties of nickel-titanium endodontic instruments. J Endod. 2002; 28(10): 716-20. DOI: https://doi.org/10.1097/00004770-200210000-00009
Bahia MGA, Melo MCC, Buono VTL. Influence of simulated clinical use on the torsional behavior of nickeltitanium rotary endodontic instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006; 101(5): 675-80. DOI: https://doi.org/10.1016/j.tripleo.2005.04.019
Lopes HP, Moreira EJL, Nelson Elias C, Andriola de Almeida R, Neves MS. Cyclic fatigue of protaper instruments. J Endod. 2007; 33(1): 55-7. DOI: https://doi.org/10.1016/j.joen.2006.09.003
Barbosa FOG, Gomes JACP, de Araujo MCP. Influence of sodium hypochlorite on mechanical properties of K3 Nickel-Titanium rotary instruments. 2007; 33(8): 982-5. DOI: https://doi.org/10.1016/j.joen.2007.05.008
Barbosa FOG, Gomes JACP, de Araujo MCP. Influence of previous angular deformation on flexural fatigue resistance of K3 Nickel – Titanium rotary instruments. 2007; 33(12): 1477-80. DOI: https://doi.org/10.1016/j.joen.2007.08.014
Johnson E, Lloyd A, Kuttler S, Namerow K. Comparison between a novel Nickel-Titanium alloy and 508 Nitinol on the cyclic fatigue life of profile 25/.04 rotary instruments. J Endod. 2008; 34(11): 1406-9. DOI: https://doi.org/10.1016/j.joen.2008.07.029
Barbosa FOG, Gomes JACP, de Araujo MCP. Influence of electrochemical polishing on the mechanical properties of K3 Nickel-Titanium rotary instruments. J Endod. 2008; 34(12): 1533-6. DOI: https://doi.org/10.1016/j.joen.2008.08.023
Gambarini G, Grande NM, Plotino G, Somma F, Garala M, De Luca M, et al. Fatigue resistance of enginedriven rotary Nickel-Titanium instruments produced by new manufacturing methods. J Endod. 2008; 34(8): 1003-5. DOI: https://doi.org/10.1016/j.joen.2008.05.007
Wolle CFB, Vasconcellos MAZ, Hinrichs R, Becker AN, Barletta FB. The effect of argon and nitrogen ion implantation on Nickel-Titanium rotary instruments. J Endod. 2009; 35(11): 1558-62. DOI: https://doi.org/10.1016/j.joen.2009.07.023
Park SY, Cheung GSP, Yum J, Hur B, Park JK, Kim HC. Dynamic torsional resistance of nickel-titanium rotary instruments. J Endod. 2010; 36(7): 1200-4. DOI: https://doi.org/10.1016/j.joen.2010.02.016
Hof R, Perevalov V, Eltanani M, Zary R, Metzger Z. The Self-Adjusting File (SAF). Part 2: mechanical analysis. J Endod. 2010; 36(4): 691-6. DOI: https://doi.org/10.1016/j.joen.2009.12.028
Dederich DN, ZAkariasen KL. The effects of cyclical axial motion on rotary endodontic instrument fatigue. Oral Surg Oral Med Oral Pathol. 1986; 61(2): 192-6. DOI: https://doi.org/10.1016/0030-4220(86)90186-6
Haïkel Y, Serfaty R, Bateman G, Senger B, Allemann C. Dynamic and cyclic fatigue of engine-driven rotary Nickel-Titanium endodontic instruments. J Endod. 1999; 25(6): 434-40. DOI: https://doi.org/10.1016/s0099-2399(99)80274-x
Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod. 2000; 26(3): 161-5. DOI: https://doi.org/10.1097/00004770-200003000-00008
Craveiro De Melo MC, De Azevedo Bahia MG, Buono VTL. Fatigue resistance of engine-driven rotary nickeltitanium endodontic instruments. J Endod. 2002; 28(11): 765-9. DOI: https://doi.org/10.1097/00004770-200211000-00005
Zinelis S, Margelos J. Failure mechanism of hedstroem endodontic files in vivo. J Endod. 2002; 28(6): 471-3. DOI: https://doi.org/10.1097/00004770-200206000-00014
Kuhn G, Jordan L. Fatigue and mechanical properties of nickel-titanium endodontic instruments. J Endod. 2002; 28(10): 716-20. DOI: https://doi.org/10.1097/00004770-200210000-00009
Bahia MGA, Melo MCC, Buono VTL. Influence of simulated clinical use on the torsional behavior of nickeltitanium rotary endodontic instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006; 101(5): 675-80. DOI: https://doi.org/10.1016/j.tripleo.2005.04.019
Lopes HP, Moreira EJL, Nelson Elias C, Andriola de Almeida R, Neves MS. Cyclic fatigue of protaper instruments. J Endod. 2007; 33(1): 55-7. DOI: https://doi.org/10.1016/j.joen.2006.09.003
Barbosa FOG, Gomes JACP, de Araujo MCP. Influence of sodium hypochlorite on mechanical properties of K3 Nickel-Titanium rotary instruments. 2007; 33(8): 982-5. DOI: https://doi.org/10.1016/j.joen.2007.05.008
Barbosa FOG, Gomes JACP, de Araujo MCP. Influence of previous angular deformation on flexural fatigue resistance of K3 Nickel – Titanium rotary instruments. 2007; 33(12): 1477-80. DOI: https://doi.org/10.1016/j.joen.2007.08.014
Johnson E, Lloyd A, Kuttler S, Namerow K. Comparison between a novel Nickel-Titanium alloy and 508 Nitinol on the cyclic fatigue life of profile 25/.04 rotary instruments. J Endod. 2008; 34(11): 1406-9. DOI: https://doi.org/10.1016/j.joen.2008.07.029
Barbosa FOG, Gomes JACP, de Araujo MCP. Influence of electrochemical polishing on the mechanical properties of K3 Nickel-Titanium rotary instruments. J Endod. 2008; 34(12): 1533-6. DOI: https://doi.org/10.1016/j.joen.2008.08.023
Gambarini G, Grande NM, Plotino G, Somma F, Garala M, De Luca M, et al. Fatigue resistance of enginedriven rotary Nickel-Titanium instruments produced by new manufacturing methods. J Endod. 2008; 34(8): 1003-5. DOI: https://doi.org/10.1016/j.joen.2008.05.007
Wolle CFB, Vasconcellos MAZ, Hinrichs R, Becker AN, Barletta FB. The effect of argon and nitrogen ion implantation on Nickel-Titanium rotary instruments. J Endod. 2009; 35(11): 1558-62. DOI: https://doi.org/10.1016/j.joen.2009.07.023
Park SY, Cheung GSP, Yum J, Hur B, Park JK, Kim HC. Dynamic torsional resistance of nickel-titanium rotary instruments. J Endod. 2010; 36(7): 1200-4. DOI: https://doi.org/10.1016/j.joen.2010.02.016
Hof R, Perevalov V, Eltanani M, Zary R, Metzger Z. The Self-Adjusting File (SAF). Part 2: mechanical analysis. J Endod. 2010; 36(4): 691-6. DOI: https://doi.org/10.1016/j.joen.2009.12.028
Moreira Braga LC, Faria Silva AC, Lopes Buono VT, de Azevedo Bahia MG. Impact of heat treatments on the fatigue resistance of different rotary nickel-titanium instruments. J Endod. 2014; 40(9): 1494-7. DOI: https://doi.org/10.1016/j.joen.2014.03.007
Sousa J, Basto J, Roseiro L, Messias A, dos Santos JM, Palma P. Avaliação da fadiga cíclica de 3 sistemas de limas utilizadas em instrumentação mecanizada. Rev Port Estomatol Med Dent e Cir Maxilofac. 2015; 56(4): 239-45. DOI: https://doi.org/10.1016/j.rpemd.2015.11.007
Capar ID, Kaval ME, Ertas H, Sen BH. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire. J Endod. 2015; 41(4): 535-8. DOI: https://doi.org/10.1016/j.joen.2014.11.008
Shen Y, Coil JM, Mclean AGR, Hemerling DL, Haapasalo M. Defects in Nickel-Titanium instruments after clinical use. Part 5: single use from endodontic specialty practices. J Endod. 2009; 35(10): 1363-7. DOI: https://doi.org/10.1016/j.joen.2009.07.004
Pedulla E, Lo Savio F, Plotino G, Grande NM, Rapisarda S, Gambarini G, et al. Effect of cyclic torsional preloading on cyclic fatigue resistance of ProTaper Next and Mtwo nickel-titanium instruments. G Ital Endod. 2015; 29(1): 3-8. DOI: https://doi.org/10.1016/j.gien.2015.05.002
Carvalho A, Freitas M, Reis L, Montalvão D, Fonte M. Rotary fatigue testing machine to determine the fatigue life of NiTi alloy wires and endondontic files. Procedia Eng. 2015; 114: 500-5. DOI: https://doi.org/10.1016/j.proeng.2015.08.098
Uslu G, Özyürek T, İnan U. Comparison of cyclic fatigue resistance of ProGlider and One G Glide path files. J Endod. 2016; 42(10): 1555-8. DOI: https://doi.org/10.1016/j.joen.2016.07.012
Isidoro J, Martins RF. Calculation of stress intensity factors KI, KII and KIII of cracked components submitted to flexural and torsional loads. Procedia Eng. 2016; 160: 131-6. DOI: https://doi.org/10.1016/j.proeng.2016.08.872
Özyürek T, Uslu G, İnan U. A comparison of the cyclic fatigue resistance of used and new glide path files. J Endod. 2017; 43(3): 477-80. DOI: https://doi.org/10.1016/j.joen.2016.10.044
Chi CW, Li CC, Lin CP, Shin CS. Cyclic fatigue behavior of nickel–titanium dental rotary files in clinical simulated root canals. J Formos Med Assoc. 2017; 116(4): 306-12. DOI: https://doi.org/10.1016/j.jfma.2016.06.002
Lopes HP, Elias CN, Vieira MVB, Vieira VTL, De Souza LC, Dos Santos AL. Influence of surface roughness on the fatigue life of Nickel-Titanium rotary endodontic instruments. J Endod. 2016; 42(6): 965-8. DOI: https://doi.org/10.1016/j.joen.2016.03.001
Lo Savio F, Pedullà E, Rapisarda E, La Rosa G. Influence of heat-treatment on torsional resistance to fracture of nickel-titanium endodontic instruments. Procedia Struct Integr. 2016; 2: 1311-8. DOI: https://doi.org/10.1016/j.prostr.2016.06.167
Loios G, Martins RF, Ginjeira A, Dragoi M V, Buican G. Fatigue resistance of rotary endodontic files submitted to axial motion in multiplanar canals manufactured by 3D printing. Procedia Eng. 2016; 160: 117-22. DOI: https://doi.org/10.1016/j.proeng.2016.08.870
Peláez Acosta E, Damas Resende P, Faria da Cunha I, Sales Joviano É, Lopes Buono VT, de Azevedo Bahia MG. Influence of cyclic flexural deformation on the torsional resistance of controlled memory and conventional Nickel-titanium instruments. 2017; 43(4): 613-8. DOI: https://doi.org/10.1016/j.joen.2016.11.007
Dosanjh A, Paurazas S, Askar M. The effect of temperature on cyclic fatigue of Nickel-titanium rotary endodontic instruments. J Endod. 2017; 43(5): 823-6. DOI: https://doi.org/10.1016/j.joen.2016.12.026
Grande NM, Plotino G, Silla E, Pedullà E, DeDeus G, ambarini G, et al. Environmental temperature drastically affects flexural fatigue resistance of Nickel-titanium rotary files. J Endod. 2017; 43(7): 1157-60. DOI: https://doi.org/10.1016/j.joen.2017.01.040
Chi CW, Deng YL, Lee JW, Lin CP. Fracture resistance of dental nickel–titanium rotary instruments with novel surface treatment: thin film metallic glass coating. J Formos Med Assoc. 2017; 116(5): 373-9. DOI: https://doi.org/10.1016/j.jfma.2016.07.003
Ha J, Kwak SW, Sigurdsson A, Chang SW, Kim SK, Kim H. Stress generation during pecking motion of rotary Nickel-titanium instruments with different. 2017; 43(10): 1688-91. DOI: https://doi.org/10.1016/j.joen.2017.04.013
Chi CW, Lai EHH, Liu CY, Lin CP, Shin CS. Influence of heat treatment on cyclic fatigue and cutting efficiency of ProTaper Universal F2 instruments. J Dent Sci. 2017; 12(1): 21-6. DOI: https://doi.org/10.1016/j.jds.2016.06.001
Gündoğar M, Özyürek T. Cyclic fatigue resistance of OneShape, HyFlex EDM, WaveOne Gold, and Reciproc Blue Nickel-titanium instruments. J Endod. 2017; 43(7): 1192-6. DOI: https://doi.org/10.1016/j.joen.2017.03.009
Azim AA, Tarrosh M, Azim KA, Piasecki L. Comparison between single-file rotary systems: part 2—the effect of length of the instrument subjected to cyclic loading on cyclic fatigue resistance. J Endod. 2018; 44(12): 1837-42. DOI: https://doi.org/10.1016/j.joen.2018.07.021
Iacono F, Pirani C, Generali L, Gatto MR, Gandolfi MG, Prati C. Cyclic fatigue resistance of Nickel-Titanium reciprocating instruments tested with an innovative kinematics. G Ital Endod. 2018; 32(1): 42-6. DOI: https://doi.org/10.1016/j.gien.2018.03.004
Shen Y, Tra C, Hieawy A, Wang Z, Haapasalo M. Effect of torsional and fatigue preloading on hyflex EDM files. J Endod. 2018; 44(4): 643-7. DOI: https://doi.org/10.1016/j.joen.2017.12.002
Alfawaz H, Alqedairi A, Alsharekh H, Almuzaini E, Alzahrani S, Jamleh A. Effects of sodium hypochlorite concentration and temperature on the cyclic fatigue resistance of heat-treated Nickel-titanium rotary instruments. J Endod. 2018; 44(10): 1563-6. DOI: https://doi.org/10.1016/j.joen.2018.07.009
Bhatt A, Rajkumar B. A comparative evaluation of cyclic fatigue resistance for different endodontic NiTi rotary files: an in-vitro study. J Oral Biol Craniofacial Res. 2019; 9(2): 119-21. DOI: https://doi.org/10.1016/j.jobcr.2018.12.003
Binous H, Bellagi A. Introducing nonlinear dynamics to chemical and biochemical engineering graduate students using MATHEMATICA©. Comput Appl Eng Educ. 2019; 27(1): 217-35. DOI: https://doi.org/10.1002/cae.22070
Barbosa IB, Scelza P, Pereira AMB, Ferreira FG, Bagueira R, Adeodato CSR, et al. Progressive structural deterioration of an endodontic instrument: a preliminary micro-computed tomography study. Eng Fail Anal. 2019; 104: 105-11. DOI: https://doi.org/10.1016/j.engfailanal.2019.05.029
Piasecki L, Makowka SR, Gambarini G. Anatomic two-dimensional and three-dimensional models for cyclic fatigue testing of endodontic instruments. Iran Endod J. 2020; 15(2): 100-5. DOI: https://doi.org/10.22037/iej.v15i2.27342
Miccoli G, Seracchiani M, Del Giudice A, Mazonni A, D’Angelo M, Bhandi S, et al. Fatigue resistance of two Nickel-Titanium rotary instruments before and after ex vivo root canal treatment. J Contemp Dent Pract. 2020; 21(7): 728-32. DOI: http://dx.doi.org/10.5005/jp-journals-10024-2875
Grande NM, Plotino G, Silla E, Pedullà E, DeDeus G, ambarini G, et al. Environmental temperature drastically affects flexural fatigue resistance of Nickel-titanium rotary files. J Endod. 2017; 43(7): 1157-60. DOI: https://doi.org/10.1016/j.joen.2017.01.040
Chi CW, Deng YL, Lee JW, Lin CP. Fracture resistance of dental nickel–titanium rotary instruments with novel surface treatment: thin film metallic glass coating. J Formos Med Assoc. 2017; 116(5): 373-9. DOI: https://doi.org/10.1016/j.jfma.2016.07.003
Ha J, Kwak SW, Sigurdsson A, Chang SW, Kim SK, Kim H. Stress generation during pecking motion of rotary Nickel-titanium instruments with different. 2017; 43(10): 1688-91. DOI: https://doi.org/10.1016/j.joen.2017.04.013
Chi CW, Lai EHH, Liu CY, Lin CP, Shin CS. Influence of heat treatment on cyclic fatigue and cutting efficiency of ProTaper Universal F2 instruments. J Dent Sci. 2017; 12(1): 21-6. DOI: https://doi.org/10.1016/j.jds.2016.06.001
Gündoğar M, Özyürek T. Cyclic fatigue resistance of OneShape, HyFlex EDM, WaveOne Gold, and Reciproc Blue Nickel-titanium instruments. J Endod. 2017; 43(7): 1192-6. DOI: https://doi.org/10.1016/j.joen.2017.03.009
Azim AA, Tarrosh M, Azim KA, Piasecki L. Comparison between single-file rotary systems: part 2—the effect of length of the instrument subjected to cyclic loading on cyclic fatigue resistance. J Endod. 2018; 44(12): 1837-42. DOI: https://doi.org/10.1016/j.joen.2018.07.021
Iacono F, Pirani C, Generali L, Gatto MR, Gandolfi MG, Prati C. Cyclic fatigue resistance of Nickel-Titanium
reciprocating instruments tested with an innovative kinematics. G Ital Endod. 2018; 32(1): 42-6. DOI: https://doi.org/10.1016/j.gien.2018.03.004
Shen Y, Tra C, Hieawy A, Wang Z, Haapasalo M. Effect of torsional and fatigue preloading on hyflex EDM files. J Endod. 2018; 44(4): 643-7. DOI: https://doi.org/10.1016/j.joen.2017.12.002
Alfawaz H, Alqedairi A, Alsharekh H, Almuzaini E, Alzahrani S, Jamleh A. Effects of sodium hypochlorite concentration and temperature on the cyclic fatigue resistance of heat-treated Nickel-titanium rotary instruments. J Endod. 2018; 44(10): 1563-6. DOI: https://doi.org/10.1016/j.joen.2018.07.009
Bhatt A, Rajkumar B. A comparative evaluation of cyclic fatigue resistance for different endodontic NiTi rotary files: an in-vitro study. J Oral Biol Craniofacial Res. 2019; 9(2): 119-21. DOI: https://doi.org/10.1016/j.jobcr.2018.12.003
Binous H, Bellagi A. Introducing nonlinear dynamics to chemical and biochemical engineering graduate students using MATHEMATICA©. Comput Appl Eng Educ. 2019; 27(1): 217-35. DOI: https://doi.org/10.1002/cae.22070
Barbosa IB, Scelza P, Pereira AMB, Ferreira FG, Bagueira R, Adeodato CSR, et al. Progressive structural deterioration of an endodontic instrument: a preliminary micro-computed tomography study. Eng Fail Anal. 2019; 104: 105-11. DOI: https://doi.org/10.1016/j.engfailanal.2019.05.029
Piasecki L, Makowka SR, Gambarini G. Anatomic two-dimensional and three-dimensional models for cyclic fatigue testing of endodontic instruments. Iran Endod J. 2020; 15(2): 100-5. DOI: https://doi.org/10.22037/iej.v15i2.27342
Miccoli G, Seracchiani M, Del Giudice A, Mazonni A, D’Angelo M, Bhandi S, et al. Fatigue resistance of two Nickel-Titanium rotary instruments before and after ex vivo root canal treatment. J Contemp Dent Pract. 2020; 21(7): 728-32. DOI: http://dx.doi.org/10.5005/jp-journals-10024-2875
Descargas
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2022 Revista Facultad de Odontología Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
El Derecho de autor comprende los derechos morales y los derechos patrimoniales.
1. Los derechos morales: nacen en el momento de la creación de la obra, sin necesidad de registro. Corresponden al autor de manera personal e irrenunciable; además, son imprescriptibles, inembargables y no negociables. Son derechos morales el derecho a la paternidad de la obra, el derecho a la integridad de la obra, el derecho a conservar la obra inédita o publicarla bajo seudónimo o anónimamente, el derecho a modificar la obra, el derecho al arrepentimiento, y el derecho a la mención, según definiciones consignadas en el artículo 40 del Estatuto de propiedad intelectual de la Universidad de Antioquia (RESOLUCIÓN RECTORAL 21231 de 2005).
2. Los derechos patrimoniales: consisten en la facultad de disponer y aprovecharse económicamente de la obra por cualquier medio. Además, las facultades patrimoniales son renunciables, embargables, prescriptibles, temporales y transmisibles, y se causan con la publicación, o con la divulgación de la obra. Para el efecto de la publicación de artículos de la Revista de la Facultad de Odontología se entiende que la Universidad de Antioquia es portadora de los derechos patrimoniales del contenido de la publicación.
Yo, el(los) autor(es), y por mi(nuestro) intermedio, la Entidad para la que estoy(estamos) trabajando, transfiero(imos) de manera definitiva, total y sin limitación alguna a la Revista Facultad de Odontología Universidad de Antioquia, los derechos patrimoniales que le corresponden sobre el artículo presentado para ser publicado tanto física como digitalmente. Declaro(amos) además que este artículo ni parte de él ha sido publicado en otra revista.
Política de Acceso Abierto
Esta revista provee acceso libre inmediato a su contenido, bajo el principio de que poner la investigación a disposición del público de manera gratuita contribuye a un mayor intercambio de conocimiento global.
Licencia Creative Commons
La Revista facilita sus contenidos a terceros sin mediar para ello ningún tipo de contraprestación económica o embargo sobre los artículos. Para ello adopta el modelo de contrato de licenciamiento de la organización Creative Commons denominada Atribución – No comercial – Compartir igual (BY-NC-SA). Esta licencia les permite a otras partes distribuir, remezclar, retocar y crear a partir de la obra de modo no comercial, siempre y cuando nos den crédito y licencien sus nuevas creaciones bajo las mismas condiciones.
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.