Genetic parameters for scrotal circumference, frame score and yearling weight of Mexican Charolais and Charbray young bulls

Authors

  • Ángel Ríos-Utrera National Institute for Forestry, Agriculture and Livestock Research
  • Moisés Montaño-Bermúdez National Institute for Forestry, Agriculture and Livestock Research
  • Vicente E. Vega-Murillo National Institute for Forestry, Agriculture and Livestock Research
  • Guillermo Martínez-Velázquez National Institute for Forestry, Agriculture and Livestock Research
  • Juan J. Baeza-Rodríguez National Institute for Forestry, Agriculture and Livestock Research

DOI:

https://doi.org/10.17533/udea.rccp.v31n3a05

Keywords:

beef cattle, genetic correlations, heritability, males, phenotypic correlations, response to selection

Abstract

Background: Knowledge of genetic correlations and the economics of traits are essential to decide which traits should be used as selection criteria. Objective: To estimate heritabilities and genetic, environmental, and phenotypic correlations, and direct (DRS) and correlated (CRS) responses to selection by scrotal circumference (SC), frame score (FS), and yearling weight (YW) of Mexican Charolais (CH), and Charbray (CB) Young bulls. Methods: Actual SC, height and YW records (10,078 for CH, and 500 for CB) were adjusted to 365 d. The 0.0505 adjustment factor recommended by the Beef Improvement Federation was used to obtain the 365-d adjusted SC for both breeds. Height and age records were used to obtain FS. Data were analyzed using a three-trait animal model. The animal model for each trait included bull breed, contemporary group (groups of young bulls born in the same herd, year, and season of the year), and age of dam as a linear covariate as fixed effects, and direct additive genetic and residual as random effects. Results: Heritability estimates for SC, FS and YW were 0.21 ± 0.04, 0.25 ± 0.04, and 0.29 ± 0.04, respectively. The genetic correlation between YW with SC was 0.37 ± 0.16, and between YW with FS was 0.42 ± 0.16. The estimate of genetic correlation between SC and FS was low and positive (0.15 ± 0.14). The DRS was 0.38 cm, 0.18 units, and 8.30 kg for SC, FS and YW. The CRS was 0.16 cm, and 0.08 units for SC and FS from indirect selection on YW. Conclusions: Direct selection for YW is expected to be effective. Indirect selection for SC and FS based on YW would not be expected to be as effective as direct selection for improving SC and FS.

|Abstract
= 271 veces | PDF
= 136 veces|

Downloads

Download data is not yet available.

Author Biographies

Ángel Ríos-Utrera, National Institute for Forestry, Agriculture and Livestock Research

PhD., La Posta Experimental Field, National Institute for Forestry, Agriculture and Livestock Research (INIFAP), Veracruz, Mexico.

Moisés Montaño-Bermúdez, National Institute for Forestry, Agriculture and Livestock Research

PhD., National Center for Disciplinary Research in Animal Physiology and Improvement (CENID Physiology), National Institute of Forestry, Agriculture and Livestock Research (INIFAP), Querétaro, Mexico.

Vicente E. Vega-Murillo, National Institute for Forestry, Agriculture and Livestock Research

PhD., National Center for Disciplinary Research in Animal Physiology and Improvement (CENID Physiology), National Institute for Forestry, Agriculture and Livestock Research (INIFAP), Querétaro, Mexico.

Guillermo Martínez-Velázquez, National Institute for Forestry, Agriculture and Livestock Research

PhD., El Verdineño Experimental Site, National Institute for Forestry, Agriculture and Livestock Research (INIFAP), Nayarit, Mexico.

Juan J. Baeza-Rodríguez, National Institute for Forestry, Agriculture and Livestock Research

PhD., Mocochá Experimental Field, National Institute for Forestry, Agriculture and Livestock Research (INIFAP), Yucatán, Mexico.

References

Afolayan RA, Pitchford WS, Deland MPB, McKiernan WA. Breedvariation and genetic parameters for growth and body development in diverse beef cattle genotypes. Animal 2007; 1(1):13-20.

Arthur PF, Archer JA, Johnston DJ, Herd RM, Richardson EC, Parnell PF. Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. J Anim Sci 2001; 79(11):2805-2811.

Assan N, Nyoni K. Systematic environmental influences and variances due to direct and maternal effects and trends for yearlingweight in cattle. Anim Res Int 2009; 6(3):1086-1092.

Barrozo D, Buzanskas ME, Oliveira JA, Munari DP, Neves HHR, Queiroz SA. Genetic parameters and environmental effects on temperament score and reproductive traits of Nellore cattle. Animal 2012; 6(1):36-40.

Bergen R, Miller SP, Wilton JW. Genetic correlations among indicator traits for carcass composition measured in yearling beef bulls and finished feedlot steers. Can J Anim Sci 2005; 85(4):463-473.

BIF, 2002. Guidelines for uniform beef improvement programs. 8th edition. Beef Improvement Federation. Athens, GA, USA.

Boldman KG, Kriese LA, Van Vleck LD, Van Tassell CP, Kachman SD. A manual for use of MTDFREML. A set of programs to obtain estimates of variances and covariances (DRAFT). USDA, ARS, Washington, DC. 1995.

Boligon AA, Albuquerque LG, Mercadante MEZ, Lobo RB. Study of relations among age at first calving, average weight gains and weights from weaning to maturity in Nellore cattle. R Bras Zootec2010; 39(4):746-751.

Boligon AA, Rorato PRN, Weber T, Everling DM, Lopes JS. Herdabilidades para ganho de peso da desmama ao sobreano e perímetro escrotal ao sobreano e tendências genética e fenotípica para ganho de peso da desmama ao sobreano em bovinos Nelore-Angus. R Bras Zootec 2006; 35(4):1323-1328.

Corbet NJ, Burns BM, Johnston DJ, Wolcott ML, Corbet DH, Venus BK, Li Y, McGowan MR, Holroyd RG. Male traits and herd reproductive capability in tropical beef cattle. 2. Genetic parameters of bull traits. Anim Prod Sci 2012; 53(2):101-113.

Crews DH, Porteous DJ. Age of dam and age at measurement adjustments and genetic parameters for scrotal circumference of Canadian Hereford bulls. Canadian J Anim Sci 2003; 83(2):183-188.

Dias LT, Faro L, Albuquerque LG. Estimativas de herdabilidade para perímetro escrotal de animais da raça Nelore. R Bras Zootec 2003; 32(6):1878-1882.

Eler JP, Ferraz JBS, Balieiro JCC, Mattos EC, Mourão GB. Genetic correlation between heifer pregnancy and scrotal circumference measured at 15 and 18 months of age in Nellore cattle. Genet Mol Res 2006; 5(4):569-580.

Everling DM, Ferreira GBB, Rorato PRN, Roso VM, Marion AE, Fernandes HD. Estimativas de herdabilidade e correlação genética para características de crescimento na fase de pré-desmama e medidas de perímetro escrotal ao sobreano em bovinos Angus-Nelore. R Bras Zootec 2001; 30 Suppl 6:2002-2008.

Frizzas OG, Grossi DA, Buzanskas ME, Paz CCP, Bezerra LAF, Lobo RB, Oliveira JA, Munari DP. Heritability estimates and genetic correlations for body weight and scrotal circumference adjusted to 12 and 18 months of age for male Nellore cattle.Animal 2009; 3(3):347-351.

Gargantini G, Cundiff LV, Lunstra DD, Van Vleck LD. Genetic relationships between male and female reproductive traits in beef cattle. Prof Anim Sci 2005; 21:195-199.

Garnero VA, Lôbo BR, Bezerra FLA, Oliveira NH. Comparação entre alguns critérios de seleção para crescimento na raça Nelore.R Bras Zootec 2001; 30(3):714-718.

Gressler SL, Bergmann JAG, Pereira CS, Penna VM, Pereira JCC, Gressler MGM. Estudo das associações genéticas entre perímetro escrotal e características reprodutivas de fêmeas Nelore. R Bras Zootec 2000; 29(2):427-437.

Horimoto ARVR, Ferraz JBS, Balieiro JCC, Eler JP. Estimation of genetic parameters for a new model for defining body structure scores (frame scores) in Nellore cattle. Genet Mol Res 2006;5(4):828-836.

Johnson MZ, Schalles RR, Dikeman ME, Golden BL. Genetic parameter estimates of ultrasound-measured longissimus muscle area and 12th rib fat thickness in Brangus cattle. J Anim Sci 1993; 71(10):2623-2630.

Koots KR, Gibson JP, Wilton JW. Analyses of published genetic parameters estimates for beef production traits. 2. Phenotypic and genetic correlations. Anim Breed Abstr 1994; 62(11):825-853.

Marle-Koster EV, Mostert BE, Westhuizen JVD. Body measurements as selection criteria for growth in South African Hereford cattle. Arch Tierz, Dummerstorf 2000; 43(1):5-15.

Mercadante ME, Razook AG, Cyrillo JN, Figueiredo LA. Caracterização do tamanho de animais Nelore com base na tabelada Federação Americana de Melhoramento de Gado de Corte (BIF). Proc Simpósio da Sociedade Brasileira de Melhoramento Animal, Pirassununga, Brasil, 2004; [access date: August 18, 2016] URL: http://sbmaonline.org.br/anais/v/trabalhos/pdfs/bc007.pdf.

Mucari TB, Alencar MM, Barbosa PF, Barbosa RT. Geneticanalyses of days to calving and their relationships with other traits in a Canchim cattle herd. Genet Mol Biol 2007; 30(4):1070-1076.

Mwansa PB, Kemp RA, Crews Jr. DH, Kastelic JP, Bailey DRC, Coulter GH. Comparison of models for genetic evaluation of scrotal circumference in crossbred bulls. J Anim Sci 2000; 78(2):275-282.

Pico BA, Neser FWC, van Wyk JB. Genetic parameters for growth traits in South African Brahman cattle. S Afr J Anim Sci 2004; 34(2):44-46.

Regatieri IC, Boligon AA, Baldi F, Albuquerque LG. Genetic correlations between mature cow weight and productive and reproductive traits in Nellore cattle. Genet Mol Res 2012;11(3):2979-2986.

Ríos-Utrera A, Hernández-Hernández VD, Villagómez AME, Zárate-Martínez JP, Villagómez-Cortés JA. Direct and maternal genetic effects for growth traits in indubrazil cattle. Rev Científ, FCV-LUZ 2013; 23(3):440-447.

Ríos-Utrera A, Martínez-Velázquez G, Vega-Murillo VE, Montaño-Bermúdez M. Genetic effects for growth traits of Mexican Charolais and Charbray cattle estimated with alternative models. Rev Mex Cienc Pec 2012; 3(3):275-290.

Ríos-Utrera A, Vega-Murillo VE, Martínez-Velázquez G, Montaño-Bermúdez M. Comparison of models for the estimation of variance components for growth traits of registered Limousin cattle. Trop Subtrop Agroecosyst 2011; 14:667-674.

Schaeffer LR. Sire and cow evaluation under multiple trait models. J Dairy Sci 1984; 67(7):1567-1580.

Schiermiester LN, Thallman RM, Kuehn LA, Kachman SD, Spangler ML. Estimation of breed-specific heterosis effects for birth, weaning, and yearling weight in cattle. J Anim Sci 2015; 93(1):46-52.

Torres-Vázquez JA, Manzanilla-Pech CIV, Borrayo-Zepeda A, Ríos-Utrera A, Vega-Murillo VE, Martínez-Velázquez G, Baeza-Rodríguez JJ, Montaño-Bermúdez M. Genetic and phenotypic parameters for yearling weight, scrotal circumference and frame score in Simmental and Simbrah beef cattle from Mexico. Rev Mex Cienc Pec 2012; 3(3):291-298.

Van Melis MH, Oliveira HN, Eler JP, Ferraz JBS, Casellas J, Varona L. Additive genetic relationship of longevity with fertility and production traits in Nellore cattle based on bivariate models. Genet Mol Res 2010; 9(1):176-187.

Van Vleck LD, Pollak EJ, Oltenacu EA. Genetics for the animal sciences. 1st ed. USA: W. H. Freeman and Company; 1987.Vega-Murillo VE, Ríos-Utrera A, Montaño-Bermúdez M, Martínez-Velázquez G. Multiple-breed genetic evaluation of growth traits in Simmental and Simbrah cattle. Trop Subtrop Agroecosyst 2012; 15(2):403-414.

Yokoo MJ, Lobo RB, Araujo FRC, Bezerra LAF, Sainz RD, Albuquerque LG. Genetic associations between carcass traits measured by real-time ultrasound and scrotal circumference and growth traits in Nelore cattle. J Anim Sci 2010; 88(1):52-58.

Downloads

Published

2018-08-23

How to Cite

Ríos-Utrera, Ángel, Montaño-Bermúdez, M., Vega-Murillo, V. E., Martínez-Velázquez, G., & Baeza-Rodríguez, J. J. (2018). Genetic parameters for scrotal circumference, frame score and yearling weight of Mexican Charolais and Charbray young bulls. Revista Colombiana De Ciencias Pecuarias, 31(3), 204–212. https://doi.org/10.17533/udea.rccp.v31n3a05

Issue

Section

Original research articles

Most read articles by the same author(s)