Genetic diversity of four broodstocks of tilapia (Oreochromis sp.) from Antioquia, Colombia


  • Andrés F. Montoya-López University of Antioquia
  • Ariel M. Tarazona Morales National University of Colombia
  • Martha Olivera-Angel University of Antioquia
  • John J. Betancur-López Colombian Association of Aquaculturists



aquaculture, aquiculture, assisted selection, fish, fisheries, genetic diversity, molecular markers, stock management, tilapia


Background: Tilapia is the most farmed fish in Colombia. However, the genetic diversity and structure of broodstocks in the hatcheries of Antioquia province remains unknown. Objective: To analyze the genetic diversity and structure of one Nile and three red tilapia broodstocks in Antioquia, Colombia. Methods: Fish were genotyped using 24 microsatellite markers of 13 linkage groups in five multiple reactions. Genetic diversity metrics were estimated and null alleles were detected. Analysis of Molecular Variance and analysis of number of clusters were used to describe the relationship between broodstocks. Results: Two microsatellites could not be amplified, and 22 were polymorphic. Average number of alleles per locus ranged 5.77 to 7.91. Locus UNH211 had the most alleles (17), whereas OMO032 had the fewest (4). Except for GM234 and OMO032, the analyzed loci had at least one private allele per population. Average effective number of alleles (3.37–4.03) was always less than the number of observed alleles. Significant deviations from Hardy-Weinberg equilibrium with heterozygote deficiencies were registered. Nine markers showed evidence of null alleles. The expected heterozygosity (0.65 to 0.67 per broodstock) was significantly higher than the observed heterozygosity (0.601 to 0.649) in the four populations. The fixation index for all broodstocks (excluding null alleles) was 0.0766 (95% confidence interval, 0.05092 to 0.10289). According to the molecular variance analysis, the greatest variation was between individuals rather than between groups of broodstocks or individuals within broodstocks. The genetic distance between the Nile and red broodstocks ranged from 0.43 to 0.54. Conclusions: Overall, these findings provide baseline information about the genetic diversity and structure of tilapia broodstocks in Antioquia, Colombia, useful for the management of hatcheries.

= 424 veces | PDF
= 399 veces|


Download data is not yet available.

Author Biographies

Andrés F. Montoya-López, University of Antioquia

Biogenesis Group, Faculty of Agrarian Sciences, University of Antioquia, Medellín, Colombia.

Ariel M. Tarazona Morales, National University of Colombia

Biogenesis Group, Department of Animal Production, Faculty of Agrarian Sciences, National University of Colombia, Medellín, Colombia.

Martha Olivera-Angel, University of Antioquia

Biogenesis Group, Faculty of Agrarian Sciences, University of Antioquia, Medellín, Colombia.

John J. Betancur-López, Colombian Association of Aquaculturists

Colombian Association of Aquaculturists (ASOACUICOLA), Medellín, Colombia.


Abdul-Muneer PM. Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet Res Int 2014; 691759.

Appleyard SA, Renwick JM, Mather PB. Individual heterozygosity levels and relative growth performance in Oreochromis niloticus(L.) cultured under Fijian conditions. Aquaculture Res 2001; 32(4):287-296.

Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR, 5000, 1996. Universite ́ de Montpellier II, Montpellier, France.

Bezault E, Balaresque P, Toguyeni A, Fermon Y, Araki H, Baroiller JF, Rognon X. Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus) across Africa. BMC Genetics 2011; 12(1):102.

Bhassu S, Yusoff K, Panandam J, Embong WK, Oyyan S, Tan SG. The genetic structure of Oreochromis spp.(Tilapia) populations in Malaysia as revealed by microsatellite DNA analysis. Biochem Genet 2004; 42(7-8):217-229.

Blanco E, Aritaki M, Taniguchi N. Microsatellite multiplex panels for population genetic analysis of red sea bream Pagrus major. Fish Sci 2012; 78:603-611.

Brinez BR, Caraballo X, Salazar M. Genetic diversity of six populations of red hybrid tilapia, using microsatellites genetic markers. Rev MVZ Cordoba 2011; 16(2):2491-2498.

Chapuis MP, Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 2007; 24(3):621-631.

Cnaani A, Zilberman N, Tinman S, Hulata G, Ron M. Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid. Mol Genet Genomics 2004; 272(2):162-72.

Dias MA, de Freitas RT, Arranz SE, Villanova GV, Hilsdorf AWS. Evaluation of the genetic diversity of microsatellite markers among four strains of Oreochromis niloticus. Anim Genet 2016;47(3):345-353.

Doyle RW. Inbreeding and disease in tropical shrimp aquaculture: A reappraisal and caution. Aquaculture Res2016; 47:21-35.

Earl DA, vonHoldt BM. Structure harvester: A website and program for visualizing Structure output and implementing the Evanno method. Cons Genet Res2012; 4(2):359-361.

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software Structure: A simulation study. Mol Ecol 2005; 14(8):2611-2620.

Excoffier L, Lischer HE. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010; 10(3):564-567.

FAO Food and Agriculture Organization of the United Nations. FAO Yearbook. Fishery and Aquaculture Statistics. Rome: FAO; 2016.

Fessehaye Y, Bovenhuis H, Rezk MA, Crooijmans R, van Arendonk JA, Komen H.. Effects of relatedness and inbreeding on reproductive success of Nile tilapia (Oreochromis niloticus). Aquaculture 2009; 294(3-4):180-186.

Gilbert KJ, Andrew RL, Bock DG, Franklin MT, Kane NC, Moore JS, Vines TH. Recommendations for utilizing and reporting population genetic analyses: The reproducibility of genetic clustering using the program structure. Mol Ecol2012; 21(20): 4925-4930.

Gu D, Mu X, Song H, Luo D, Xu M, Luo J, Hu Y. Genetic diversity of invasive Oreochromis spp. (tilapia) populations in Guangdong province of China using microsatellite markers. Biochem Syst Ecol 2014; 55:198-204.

Gutiérrez F, Lasso CA, Baptiste MP, Sánchez-Duarte P, Díaz AM, editors. VI. Catálogo de la biodiversidad acuática exótica y trasplantada en Colombia: moluscos, crustáceos, peces, anfibios, reptiles y aves. Serie Editorial Recursos Hidrobiológicos y Pesqueros Continentales de Colombia. Bogotá D.C.: Instituto de Investigación de los Recursos Biológicos Alexander von Humboldt; 2012.

Hardy OJ, Vekemans X. Spagedi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes2002; 2(4):618-620.

Hassanien HA, Gilbey J. Genetic diversity and differentiation of Nile tilapia (Oreochromis niloticus) revealed by DNA microsatellites. Aquaculture Res2005; 36(14):1450-1457.

Karuppannan KV, Noraida I, Oyyan S. An assessment on red tilapia stocks in Malaysia using microsatellite markers. Int J Fis Aquaculture2013; 5(5):78-82. 7

Koskinen MT, Hirvonen H, Landry PA, Primmer CR. The benefits of increasing the number of microsatellites utilized in genetic population studies: An empirical perspective. Hereditas 2004; 141(1):61-67.

Lee BY, Lee WJ, Streelman JT, Carleton KL, Howe AE, Hulata G, Kocher TD. A second-generation genetic linkage map of tilapia (Oreochromis spp.). Genetics 2005; 170(1):237-244.

Lind CE, Ponzoni RW, Nguyen NH, Khaw HL. Selective breeding in fish and conservation of genetic resources for aquaculture. Reprod Domest Anim 2012; 47(Suppl 4):255-63.

Liu F, Sun F, Li J, Xia JH, Lin G, Tu RJ, Yue GH. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus x Oreochromis spp.) and mapping of sex-determining loci. BMC Genomics 2013; 14:14-58.

Matschiner M, Salzburger W. Tandem: Integrating automated allele binning into genetics and genomics workflows. Bioinformatics 2009; 25(15):1982-1983.

McKinna EM, Nandlal S, Mather PB, Hurwood DA. An investigation of the possible causes for the loss of productivity in genetically improved farmed tilapia strain in Fiji: Inbreeding versus wild stock introgression. Aquaculture Res2010; 41(11):e730-e742.

Melo DC, Oliveira DA, Ribeiro LP, Teixeira CS, Sousa AB, Coelho EG, Teixeira EA. Caracterização genética de seis plantéis comerciais de tilápia (Oreochromis) utilizando marcadores microssatélites. Arq Bras Med Vet Zootec 2006; 58(1):87-93.

Moen T, Agresti JJ, Cnaani A, Moses H, Famula TR, Hulata G, May B. A genome scan of a four-way tilapia cross supports the existence of a quantitative trait locus for cold tolerance on linkage group 23. Aquaculture Res 2004; 35(9):893-904.

Moreira AA, Hilsdorf AW, Da Silva JV, De Souza VR. Variabilidade genética de duas variedades de tilápia nilótica por meio de marcadores microssatélites. Pesq Agropec Bras 2007; 42(4): 521-526.

Napora-Rutkowski Ł, Rakus K, Nowak Z, Szczygieł J, Pilarczyk A, Ostaszewska T, Irnazarow I. Genetic diversity of common carp (Cyprinus carpio L.) strains breed in Poland based on microsatellite, AFLP, and mtDNA genotype data. Aquaculture 2017; 473: 433–442.

NMFS National Marine Fisheries Service Fisheries Statistics and Economics Division. Annual Trade Data by Product, Country/Association 2016. [access date: 11/20/2016] URL:

Nei M. Genetic Distance between Populations. Am Nat 1972; 106(949):283-292.

Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics1978; 89(3):583-590.

Nyingi D, De Vos L, Aman R, Agnèse JF. Genetic characterization of an unknown and endangered native population of the Nile tilapia Oreochromis niloticus (Linnaeus, 1758) (Cichlidae; Teleostei) in the Loboi Swamp (Kenya). Aquaculture 2009; 297(1-4):57-63.

OIE World Organisation for Animal Health. Aquatic Animal Health Code. Paris: OIE; 2016.

Orozco-terWengel P, Corander J, Schlötterer C. Genealogical Lineage sorting leads to significant, but incorrect Bayesian multilocus inference of population structure. Mol Ecol 2011; 20(6):1108-1121.

Petersen RL, Garcia JE, Mello G, Liedke AM, Sincero TC, Grisard EC. Análise da diversidade genética de tilápias cultivadas no estado de Santa Catarina (Brasil) utilizando marcadores microssatélites. Bol Inst Pesca 2012; 38(4):313-321.

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000; 155(2):945-959.

Pritchard JK, Wen X, Falush D. Documentation for structure software: version 2.3 2010. [access date: 11/20/2016] URL:

Putman AI, Carbone I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 2014; 4(22):4399-428.

Queirós J, Godinho R, Lopes S, Gortazar C, de la Fuente J, Alves PC. Effect of microsatellite selection on individual and population genetic inferences: an empirical study using cross-specific and species-specific amplifications. Mol Ecol Resour 2015; 15:747–760.

Rodriguez-Rodriguez MD, Lopera-Barrero NM, Vargas L, Albuquerque DM, Goes ES, Prado OP, Ribeiro RP. Caracterização genética de gerações de tilápia GIFT por meio de marcadores microssatélites. Pesq Agropec Bras2013; 48(10):1385-1393.

Romana-Eguia MR, Ikeda M, Basiao ZU, Taniguchi N. Genetic diversity in farmed Asian Nile and red hybrid tilapia stocks evaluated from microsatellite and mitochondrial DNA analysis. Aquaculture 2004; 236(1-4):131-150.

Romana-Eguia MR, Ikeda M, Basiao ZU, Taniguchi N. Genetic changes during mass selection for growth in Nile tilapia, Oreochromis niloticus (L.), assessed by microsatellites. Aquaculture Res 2005; 36(1):69-78.

Rousset F. Genepop’007: A complete re-implementation of the Genepop software for Windows and Linux. Mol Ecol Resour 2008; 8(1):103-106.

Rutten MJ, Komen H, Deerenberg RM, Siwek M, Bovenhuis H. Genetic characterization of four strains of Nile tilapia (Oreochromis niloticus L.) using microsatellite markers. Anim Genet 2004; 35(2):93-97.

Saad YM, Rashed MA, Atta AH, Ahmed NE. The efficiency of microsatellite DNA markers for estimating genetic polymorphism in some Tilapia species. Life Sci J2013; 10(3):2230-2234.

Selkoe KA, Toonen RJ. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 2006; 9:615–629.

Shyamala G, Karal Marx K, Jeyasekaran G. Genetic diversity in farmed Nile and Red hybrid Tilapia stocks in India using microsatellite genetic markers. Master Thesis. Fisheries college and Research Institute, Tamil Nadu Fisheries University. Nagapattinam (India).

Stewart S, Wickramasinghe D, Dorrance AE, Robertson AE. Comparison of three microsatellite analysis methods for detecting genetic diversity in Phytophthora sojae (Stramenopila: Oomycete). Biotechnol Lett 2011; 33:2217.

Sukmanomon S, Senanan W, Kapuscinski AR, Na-Nakorn U. Genetic diversity of feral populations of Nile tilapia (Oreochromis niloticus) in Thailand and evidence of genetic introgression. Kasetsart J (Nat. Sci.) 2012; 46:200-216.

Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P. Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Resour 2004; 4(3):535-538.

Vemireddy LR, Archak S, Nagaraju J. Capillary electrophoresis is essential for microsatellite marker based detection and quantification of adulteration of Basmati rice (Oryza sativa) L. J Agric Food Chem 2007; 55:8112–8117.

Weir B, Cockerham CC. Estimating F-Statistics for the Analysis of Population Structure Evolution1984; 38(6):1358-1370.




How to Cite

Montoya-López, A. F., Tarazona Morales, A. M., Olivera-Angel, M., & Betancur-López, J. J. (2019). Genetic diversity of four broodstocks of tilapia (Oreochromis sp.) from Antioquia, Colombia. Revista Colombiana De Ciencias Pecuarias, 32(3), 201–213.



Original research articles

Most read articles by the same author(s)