Characterization of ruminal bacteria in grazing Nellore steers

Authors

  • Raphael Barbetta-de-Jesus São Paulo State University
  • Yury T. Granja-Salcedo São Paulo State University
  • Juliana D. Messana São Paulo State University
  • Luciano Takeshi-Kishi São Paulo State University
  • Eliana Gertrudes Macedo-Lemos São Paulo State University
  • Jackson Antonio Marcondes-de-Souza São Paulo State University
  • Telma Teresinha-Berchielli São Paulo State University

DOI:

https://doi.org/10.17533/udea.rccp.v32n4a01

Keywords:

bacterial diversity, Cynodon spp, Firmicutes, Nellore, new generation sequencing, steers, ruminant, ruminal bacteria, rumen microorganisms, Zebu

Abstract

Background: Rumen microorganisms have developed a series of complex interactions, representing one of the best examples of symbiosis between microorganisms in nature. Conventional taxonomic methods based on culture techniques are being replaced by molecular techniques that are faster and more accurate. Objective: To characterize rumen bacterial diversity of Nellore steers grazing on tropical pastures by sequencing the 16S rRNA gene using Illumina sequenctng. Methods: Three rumen-cannulated Nellore steers were used. The liquid and solid fractions of the rumen contents were processed to extract metagenomic DNA, and the VI and V2 hypervariable regions of the 16S rRNA gene were sequenced using Illumina sequencing. Results: A total of 11,407,000 reads of adequate quality were generated, and 812 operational taxonomic units (OTUs) were found at the species level. Twenty-seven phyla were identified, and the predominant phyla were Firmicutes (23%), Bacteroidetes (14%), Proteobacteria (10%), Spirochaetes (9%), Fibrobacteres (7%), Tenericutes (5%), and Actinobacteria (2%), which represented 70% of the total phyla identified in the rumen content. Conclusion: Rumen environment in grazing Nellore steers showed high bacterial diversity, with Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, and Fibrobacteres as the predominant phyla.

|Abstract
= 453 veces | PDF
= 378 veces| | HTML
= 0 veces|

Downloads

Download data is not yet available.

Author Biographies

Raphael Barbetta-de-Jesus, São Paulo State University

Department of Zootechnics, Faculty of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal Campus, Jaboticabal, São Paulo, Brazil.
 

Yury T. Granja-Salcedo, São Paulo State University

Department of Zootechnics, Faculty of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal Campus, Jaboticabal, São Paulo, Brazil.

Juliana D. Messana, São Paulo State University

Department of Zootechnics, Faculty of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal Campus, Jaboticabal, São Paulo, Brazil.

Luciano Takeshi-Kishi, São Paulo State University

Department of Technology, Faculty of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal Campus, Jaboticabal, São Paulo, Brazil.

Eliana Gertrudes Macedo-Lemos, São Paulo State University

Department of Biology, Faculty of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal Campus, Jaboticabal, São Paulo, Brazil.
 
 

Jackson Antonio Marcondes-de-Souza, São Paulo State University

Department of Biology, Faculty of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal Campus, Jaboticabal, São Paulo, Brazil.

Telma Teresinha-Berchielli, São Paulo State University

Department of Zootechnics, Faculty of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Campus Jaboticabal, Jaboticabal, São Paulo, Brazil.

References

Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 1995; 59:143–149.

Attwood GT, Reilly K. Identification of proteolytic rumen bacteria isolated from New Zealand cattle. J Appl Bacteriol 1995; 79(1):22-29. doi:10.1111/j.1365-2672.1995.tb03119.x

Attwood GT, Reilly K, Patel BK. Clostridium proteoclasticum sp. nov., a novel proteolytic bacterium from the bovine rumen. Int J Syst Bacteriol 1996; 46(3):753-758. doi:10.1099/00207713-46-3-753

Briesacher SL, May T, Grigsby KN, Kerley MS, Anthony RV, Paterson JA. Use of DNA probes to monitor nutritional effects on ruminal prokaryotes and Fibrobacter succinogenes S85. J Anim Sci 1992; 70(1):289-295. doi:10.2527/1992.701289x

Bryant MP, Small N. The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J Bacteriol 1956; 72(1):16-21.

Carvalho IPC, Fiorentini G, Castagnino PS, Jesus RB, Messana JD, Granja-Salcedo YT, Detman E, Padmanabha J, McSweeney CS, Berchielli TT. Supplementation with lipid sources alters the ruminal fermentation and duodenal flow of fatty acids in grazing Nellore steers. Anim Feed Sci Technol 2017; 227:142-153. doi:10.1016/j.anifeedsci.2017.02.017

Chao A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 1987; 43(4):783-791.

Cirne DG, Delgado OD, Marichamy S, Mattiasson B. Clostridium lundense sp. nov., a novel anaerobic lipolytic bacterium isolated from bovine rumen. Int J Syst Evol Microbiol 2006; 56(Pt3):625-628. doi:10.1099/ijs.0.63730-0

Cole JR, Wang Q, Fish JA, Chai B, McGarrel DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42:633-642. doi:10.1093/nar/gkt1244

Coppi MV, Leang C, Sandler SJ, Lovley DR. Development of a Genetic System for Geobacter sulfurreducens. Appl Environ Microbiol 2001; 67(7):3180-3187. doi:10.1128/AEM.67.7.3180-3187.2001

Cotta MA. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch. Appl Environ Microbiol 1992; 58(1):48-54.

Deng W,Xi D, Mao H, Wanapat M. The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Mol Biol Rep 2008; 35(2):265-74. doi:10.1007%2Fs11033-007-9079-1

Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012; 3(4):289-306. doi:10.4161/gmic.19897

Gillis M, Vandamme P, Vos PD, Swings J, Kersters K. Polyphasic taxonomy. In: Boone DR, Castenholz RW, Garrity GM, editors. The archaea and the deeply branching and phototrophic bacteria. New York: Springer-Verlag 2001:43-47.

Granja-Salcedo YT, Ramirez-Uscategui RA, Machado EG, Duarte Messana J, Takeshi Kishi L, Lino Dias AV, Berchielli TT. Studies on bacterial community composition are affected by the time and storage method of the rumen content. PLoS ONE 2017; 12(4): e0176701. doi:10.1371/journal.pone.0176701

Henderson G, Cox F, Ganesh S, Jonker A, Young W, Global Rumen Census Collaborators, Janssen P. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 2015; 5: 14567. doi:10.1038/srep14567

Hill GM, Gates RN, Burton GW. Forage quality and grazing steer performance from Tifton 85 and Tifton 78 bermudagrass pastures. J Anim Sci 1993; 71(12):3219–3225. doi:10.2527/1993.71123219x

Kim M, Morrison M, Yu Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 2011; 76(1):49-63. doi:10.1111/j.1574-6941.2010.01029.x

Kobayashi Y, Shinkai T, Koike S. Ecological and physiological characterization shows that Fibrobacter succinogenes is important in rumen fiber digestion - review. Folia Microbiol (Praha). 2008; 53(3):195-200. doi:10.1007%2Fs12223-008-0024-z

Li RW, Wu S, Baldwin RLT, Li W, Li C. Perturbation dynamics of the rumen microbiota in response to exogenous butyrate. Plos One 2012; 7(1):e29392. doi:10.1371/journal.pone.0029392

Ling LY, Zhang Z, Wu M, Wu Y, Xun FJ. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. Biomed Res Int 2014;13. doi:10.1155/2014/512497

Lovley DR. Fe(III)- and Mn(IV)-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The prokaryotes, in press. New York: Springer-Verlag, Inc.; 2000.

MAPA—Ministério da Agricultura, Pecuária e Abastecimento, 2016; [access date: Jan 2016] URL:http://www.agricultura.gov.br/animal/especies/bovinos-e-bubalinos/

Magurran AE. Measuring biological diversity. Oxford, UK: Blackwell Publishing; 2004.

McAllister TA, Cheng KJ, Rode LM, Forsberg CW. Digestion of barley, maize, and wheat by selected species of ruminal bacteria. Appl Environ Microbiol 1990;56(10):3146-3153.

McCann JC, Wiley LM, Forbes TB, Rouquette Jr FM, Tedeschi LO. Relationship between the Rumen Microbiome and Residual Feed Intake-Efficiency of Brahman Bulls Stocked on Bermudagrass Pastures. Plos One 2014; 9:3 e91864. doi:10.1371/journal.pone.0091864

Murray RGE. Bacterial diversity. In: Atlas RM, editors. Principles of Microbiology. New York: Mc Graw-Hill; 1997:1056-1097.

Neto AJ, Messana JD, Granja-Salcedo YT, Castagnino PS, Fiorentini G, Reis RA, Berchielli TT. Effect of starch level in supplement with or without oil source on diet and apparent digestibility, rumen fermentation and microbial population of Nellore steers grazing tropical grass. Liv Sci 2017; 202:171-179. doi:10.1016/j.livsci.2017.06.007

Oliveira MN, Jewell KA, Freitas FS, Benjamin LA, Toâtola MR, Borges AC, Moraes CA, Suen G. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Vet Microbiol 2013; 28(3-4):307-314. doi:10.1016/j.vetmic.2013.02.013

Pandya PR, Singh KM, Parnerkar S, Tripathi AK, Mehta HH, Rank DN, Kothari RK, CG Joshi. Bacterial diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis. J Appl Genet 2010; 51(3):395-402. doi:10.1007/2FBF03208869

Pittman KA, MP Bryant. Peptides and Other Nitrogen Sources for Growth of Bacteroides Ruminicola. J Bacteriol 1964; 88:401-410.

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007; 35(21):7188-7196. doi:10.1093/nar/gkm864

Reis RA, Ruggieri AC, Casagrande DR, Pascoa AG. Suplementação como estratégia do manejo das pastagens. Brazilian journal of animal science 2009; 38 Suppl: 147-159. doi/10.1590/S1516-35982009001300016

Russell JB. Fermentation of peptides by Bacteroides ruminicola B14. Appl Environ Microbiol 1983; 45:1566-1574.

San Vito E, Messana JD, Castagnino PS, Granja-Salcedo YT, Dallantoina EE, Berchielli TT. Effect of crude glycerin in supplement on the intake, rumen fermentation, and microbial profile of Nellore steers grazing tropical grass. Liv Sci 2016; 192:17-24. doi:10.1016/j.livsci.2016.08.011

Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011; 27(6):863+864. doi:10.1093/bioinformatics/btr026

Sijpestejin AK. Cellulose-decomposing bacteria from the rumen of cattle. Antonie Van Leeuwenhoek 1949; 15(1949):49-52.

Stanton TB, Canale-Parola E. Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria. Archives of Microbiology 1980; 127(2):145-156.

Sylvester JT, Karnati SK, Yu Z, Morrison M, Firkins JL. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. Nutr J 2004; 134(12):3378-3384. doi:10.1093/jn/134.12.3378

Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, Matsui H, Benno Y. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries.FEMS Microbiol Ecol 1999; 29(2):159-169. doi:10.1016/S0168-6496(99)00008-2

Van Gylswyk NO. Enumeration and presumptive identification of some functional groups of bacteria in the rumen of dairy cows fed grass silage-based diets. FEMS Microbiol Lett 1990; 73:243-253.

Vandamme P, Pot B, Gillis M, Vos PD, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematic. Microbiol Rev 1996; 60:407-438.

Wallace RJ, McKain N, Broderick GA. Breakdown of different peptides by Prevotella (Bacteroides) ruminicola and mixed microorganisms from the sheep rumen. Curr Microbiol 1993; 26(6):333-336.

Wu S, Ransom L, Baldwin RL, Li W, Li CE, Connor E, Li RW. The bacterial community composition of the bovine rumen detected using pyrosequencing of 16S rRNA genes. Metagenomics 2012; 1(11):1-11. doi:10.1128/AEM.00720-15

Yang WZ, Beauchemin KA. Physically effective fiber: method of determination and effects on chewing, ruminal acidosis, and digestion by dairy cows. J Dairy Sci 2006; 89(7):2618–2633. doi:10.3168/jds.S0022-0302(06)72339-6

Young JP, Downer HL, Eardly BD. Phylogeny of the phototrophic rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol 1991; 173(7):2271-2277.

Downloads

Published

2019-11-07

How to Cite

Barbetta-de-Jesus, R., Granja-Salcedo, Y. T., Messana, J. D., Takeshi-Kishi, L., Macedo-Lemos, E. G., Marcondes-de-Souza, J. A., & Teresinha-Berchielli, T. (2019). Characterization of ruminal bacteria in grazing Nellore steers. Revista Colombiana De Ciencias Pecuarias, 32(4), 248–260. https://doi.org/10.17533/udea.rccp.v32n4a01

Issue

Section

Original research articles

Most read articles by the same author(s)