The spawning method affects the reproductive efficiency of piracanjuba fish (Brycon orbignyanus) in restocking programs


  • Pedro L. de Castro State University of Mato Grosso do Sul
  • Nelson M. Lopera-Barrero State University of Londrina
  • Elenice S. dos Reis-Goes Federal University of Grande Dourados
  • Felipe P. de Souza State University of Londrina
  • Satia C. Bomfim State University of Mato Grosso do Sul
  • André L. Julien-Ferraz State University of Mato Grosso do Sul
  • Ricardo P. Ribeiro State University of Maringá



aquaculture, breeders, broodfish, broodstock, Brycon orbignyanus, fertilization, fish, genetic diversity, hatching, microsatellite markers, mortality, reproductive efficiency, restocking, spawning, strip-spawning


Background: Preserving the genetic diversity of wild fish is an important consideration for restocking programs, as inbreeding can compromise progeny survival as well as impact the resilience of natural populations. Objective: To evaluate the influence of spawning method: semi-natural (SN) or strip-spawning (ST), and the number of breeders (1♀:3♂ and 2♀:6♂) on the reproductive efficiency and genetic diversity of B. orbignyanus progeny destined for restoration of wild stocks. Methods: Rates of fertilization, hatching and broodfish mortality were recorded. For genetic evaluations (allele frequency, observed and expected heterozygosity, Shannon index, inbreeding coefficient, molecular variance analysis, and genetic differentiation), breeders (n=24), and their progenies (90 larvae/treatment) were sampled and analyzed using eight microsatellite markers. Results: Higher fertilization and hatching rates, and lower broodfish mortality were observed for the SN method (p<0.05), whereas the number of breeders did not affect these parameters (p>0.05). Interaction between spawning method and number of breeders was not significant (p>0.05). The amplified microsatellite loci produced a total of 30 alleles, with sizes between 80 and 225 bp and their frequencies indicated an increase (p<0.05) of genetic diversity in the progenies, but low genetic differentiation between treatments (p>0.05). Conclusion: The spawning methods and number of breeders tested increased equally the genetic diversity of the progeny, with low genetic differentiation between treatments. In contrast, rates of fertilization, hatching and brood fish mortality revealed that the SN method resulted in the best reproductive efficiency due to the handling stress and injuries caused by ST. Thus, SN proves to be the most suitable spawning-method for B. orbignyanus in restocking programs.

= 390 veces | PDF
= 321 veces|


Download data is not yet available.

Author Biographies

Pedro L. de Castro, State University of Mato Grosso do Sul
Animal Science Postgraduate Program, State University of Mato Grosso do Sul, Aquidauana, Mato Grosso do Sul, Brazil.

Nelson M. Lopera-Barrero, State University of Londrina
Animal Science Postgraduate Program, State University of Londrina, Londrina, Paraná, Brazil.

Elenice S. dos Reis-Goes, Federal University of Grande Dourados
Fishery engineering department, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.

Felipe P. de Souza, State University of Londrina
Animal Science Postgraduate Program, State University of Londrina, Londrina, Paraná, Brazil.

Satia C. Bomfim, State University of Mato Grosso do Sul
Animal Science Postgraduate Program, State University of Mato Grosso do Sul, Aquidauana, Mato Grosso do Sul, Brazil.

André L. Julien-Ferraz, State University of Mato Grosso do Sul
Animal Science Postgraduate Program, State University of Mato Grosso do Sul, Aquidauana, Mato Grosso do Sul, Brazil.

Ricardo P. Ribeiro, State University of Maringá
Animal Science department, State University of Maringá, Maringá, Paraná, Brazil.


Barroso RM, Hilsdorf AWS, Moreira HLM, Mello AM, Guimarães SEF, Cabello PH, Traub-Cseko YM. Identification and characterization of microsatellites loci in Brycon opalinus (Cuvier, 1819) Characiforme, Characidae, Bryconiae. Mol Ecol Notes 2003; 3(2):297–298. DOI: http://10.1046/j.1471-8286.2003.00435.x

Bassam BJ, Caetano-Anollés G, Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 1991; 196(1):80–3. DOI:

Bignardi AB, Povh JA, Alves MS, Goes ESR, Filho RAC, Castro RJ, Lopera-Barrero NM. Genetic variability of Brycon hilarii in a repopulation program. Braz Arch Biol Technol 2006, 59(1):1–9. DOI:

Castro PL, Lewandowski V, Souza FP, Sary C, Leite NG, Lopera-Barrero NM, Ribeiro RP. Genetic variability of larvae and fingerlings of Piracanjuba (Brycon orbignyanus). Arq Bras Med Vet Zootec 2019; 71(2):696–702. DOI:

Chapuis M, Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 2007; 24(3):621–631. DOI:

Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 2005; 1(1):47–50.

Ferreira EB, Cavalcanti PP, Nogueira DA. ExpDes: experimentais designs package. R package version 1.1.2 2013; [Nov. 8 2016]. URL:

Godinho HP. Estratégias reprodutivas de peixes aplicadas à aquicultura: bases para o desenvolvimento de tecnologias de produção. Rev Bras Reprod Anim 2007; 31(3):351–360.

Goudet J. FSTAT Version 2.9.4.: A Program to Estimate and Test Population Genetics Parameters. 2005; [access date: 03/05/2020]. URL:

Henriques R, Nielsen ES, Durholtz D, Japp D, Von Der Heyden S. Genetic population sub-structuring of kingklip (Genypterus capensis - Ophidiidiae), a commercially exploited demersal fish off South Africa. Fish Res 2017; 187(1):86–95. DOI:

Lopera-Barrero NM, Povh JA, Ribeiro RP, Gomes PC, Jacometo CB, Lopes TS. Comparison of DNA extraction protocols of fish fin and larvae samples: modified salt (NaCl) extraction. Cienc Investig Agrar 2008; 35(1):65–74. DOI:

Lopera-Barrero NM, Vargas L, Sirol RN, Ribeiro RP, Povh JA, Mangolin CA. Caracterização genética de Brycon orbignyanus utilizando o sistema seminatural. Arq Bras Med Vet Zootec 2010; 62(1):184–191. DOI:

Lopera-Barrero NM, Alvarez CAR., Rodriguez-Rodriguez MP, Povh JA, Vargas L, Streit Jr DP, Sirol RN, Ribeiro RP. Genetic diversity and paternity of Brycon orbignyanus offspring obtained for different reproductive systems. Semin Cienc Agrar 2014; 35(1):541–554. DOI:

Lopera-Barrero NM, Povh JA, Sirol RN, Rodriguez-Rodriguez MP, Lima ES, Poveda-Parra AR, Souza FP, Murari PJF, Otonel RAA, Ribeiro RP. Genetic diversity of pacu and piapara broodstocks in restocking programs in the rivers Paraná and Paranapanema (Brazil). Semin Cienc Agrar 2016; 37(4):2365–2374. DOI:

Matsumoto CK, Hilsdorf AWS. Microsatellite variation and population genetic structure of a neotropical endangered Bryconinae species Brycon insignis Steindachner, 1877: implications for its conservation and sustainable management. Neotrop Ichthyol 2009; 7(3):395–402. DOI:

Raymond M, Rousset F. An exact test for population differentiation. Evolution 1995; 49(6): 1280–1283. DOI:

Reynalte-Tataje DA, Lopes CA, Ávila-Simas S, Garcia JRE, Zaniboni-Filho E. Artificial reproduction of neotropical fish: Extrusion or natural spawning? Nat Sci 2013; 5(7):1–6. DOI:

Romana-Eguia MRR, Minoru I, Basiao ZU, Taniguchi N. Genetic diversity in farmed Asian Nile and red hybrid tilapia stocks evaluated from microsatellite and mitochondrial DNA analysis. Aquaculture 2004; 236(4):131–150. DOI:

Samarin MA, Policar T, Lahnsteiner F. Fish Oocyte Ageing and its Effect on Egg Quality. Rev Fish Sci 2015; 23(3):302–314. DOI:https://10.1080/23308249.2015.1053560

Sanches A, Galetti PM. Microsatellites loci isolated in the freshwater fish Brycon hilarii. Mol Ecol Notes 2006; 6(4):1045–1046. DOI:

Sato Y, Fenerich-Verani N, Junior V, Godinho HP, Vieira L. Reprodução artificial do dourado Salminus brasiliensis (Pisces: Characidae) da bacia do rio São Francisco. Rev Bras Repro Ani 1997; 31(1):113–116.

Souza FP, Castro PL, Goes ESR, Ribeiro RP, Santos SCA, Lima ESC, Murari PJF, Lopera-Barrero NM. Genetic variability of Prochilodus lineatus in artificial and semi-natural reproduction. Ital J Anim Sci 2018; 17(2):321–325. DOI:

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 2004; 4(3):535–538. DOI:

Wright S. Evolution and genetics of population. 1st ed. Chicago: University of Chicago Press; 1978. Zaniboni-Filho E, Nuñer APO. Fisiologia da reprodução e propagação artificial dos peixes. In: Cyrino JEP, Urbinati EC, Fracalossi DM, Castagnolli N, editores. Tópicos especiais em piscicultura de água doce tropical intensiva. 1st ed. São Paulo (SP): TecArt; 2004. p.45–73.

Zanoni MA, Costa FG, de Carvalho S, Seiva FRF. Physiological and biochemical changes of females of Piracanjuba, subjected to induced reproduction. J Anim Physiol Anim Nutr 2015; 100(4):673–679. DOI:

Zanoni MA, Carvalho S, Costa FG, Seiva FRF. Stress evaluation in dourado females (Salminus brasiliensis) submitted to two different methods of induced spawning. Int J Fish Aqua 2019; 11(5):97–103. DOI:




How to Cite

de Castro, P. L., Lopera-Barrero, N. M., Reis-Goes, E. S. dos, de Souza, F. P., Bomfim, S. C., Julien-Ferraz, A. L., & Ribeiro, R. P. (2020). The spawning method affects the reproductive efficiency of piracanjuba fish (Brycon orbignyanus) in restocking programs. Revista Colombiana De Ciencias Pecuarias, 34(1), 29–39.



Original research articles

Most read articles by the same author(s)

Similar Articles

> >> 

You may also start an advanced similarity search for this article.