Presence of Chlamydia abortus in colostrum, milk and vaginal discharge samples of sheep
DOI:
https://doi.org/10.17533/udea.rccp.v35n2a04Keywords:
Chlamydia abortus, chlamydial infection, colostrum, ewes, milk, ovine, secretion, sheep, vaginal dischargeAbstract
Background: The main transmission route of Chlamydia abortus is by ingesting the microorganism that has been eliminated in vaginal secretions, placental membranes or abortions that contaminate the environment and, possibly, through milk and colostrum. Elimination through vaginal secretions is well documented. However, there are no reports about isolation and identification of C. abortus in the colostrum or milk of infected sheep, so it is important to determine whether or not C. abortus may be present in these secretions, which are the only food of lambs. Objective: To detect C. abortus in colostrum, milk, and vaginal secretions of sheep with a history of reproductive disorders. Methods: Colostrum, milk, and vaginal exudates were collected from 66 sheep. The samples were inoculated in mouse fibroblast cell cultures and the presence of C. abortus determined by direct immunofluorescence. Results: 19 out of 66 colostrum samples (28.7%), 14 out of 66 milk samples (21.2%) and 17 out of 66 vaginal swabs (25.7%) were positive for C. abortus. The 50 samples positive for isolation and detected by immunofluorescence, together with 42 negative samples were subjected to qPCR to amplify a fragment of the ompA gene from C. abortus. Thirty-eight of the 92 samples processed by this technique were positive for C. abortus. Conclusion: The results demonstrated the presence of C. abortus in a high proportion in colostrum, milk and vaginal secretions of infected sheep. To the best of our knowledge, this is the first field study confirming the presence of C. abortus in colostrum, which shows that excretion of Chlamydia by lactogenesis could occur in the first hours after birth.
Downloads
References
Barati S, Moori-Bakhtiari N, Najafabadi MG, Momtaz H, Shokuhizadeh L. The role of zoonotic chlamydial agents in ruminants abortion. Iranian J of Microbiol 2017; 9(5):288–294. URL: https://pubmed.ncbi.nlm.nih.gov/29296274/
Castro N, Capote J, Bruckmaier RM, Argüello A. Management effects on colostrogenesis in small ruminants: A review. J Appl Anim Res 2011; 39(2):85–93. DOI: https://doi.org/10.1080/09712119.2011.581625
Elwell C, Mirrashidi K, Engel J. Chlamydia cell biology and pathogenesis. Nature Rev Microbiol 2016; 14(6):385–400. DOI: https://doi.org/10.1038/nrmicro.2016.30
Escuder VD, Espinosa MI, Rodríguez JM, Fernández L, Pallás ACR. Effect of HTST and holder pasteurization on the concentration of immunoglobulins, growth factors, and hormones in donor human milk. Front Immunol 2018. 9:2222. DOI: https://doi.org/10.3389/fimmu.2018.02222
Escuder VD, Rodríguez JM, Espinosa MI, Corzo N, Montilla A, García SA, Visitación CM, Fontecha J, Serrano J, Fernández L, Pallás ACR. High-temperature short-time and holder pasteurization of donor milk: impact on milk composition. Life 2021; 11(2):114. DOI: https://doi.org/10.3390/life11020114
Livingstone M, Wheelhouse N, Ensor H, Rocchi M, Maley S, Aitchison K, Wattegedera S, Wilson K, Sait M, Siarkou V, Vretou E, Entrican G, Dagleish M, Longbottom D. Pathogenic outcome following experimental infection of sheep with Chlamydia abortus variant strains LLG and POS. PLoS ONE 2017; 12(5):1–19. DOI: https://doi.org/10.1371/journal.pone.0177653
Longbottom D, Coulter LJ. Animal chlamydioses and zoonotic implications. J Comp Pathology 2003; 128(4):217–244. DOI: https://doi.org/10.1053/jcpa.2002.0629
Nietfeld JC. Chlamydial infections in small ruminants. The Veterinary Clinics of North America. Food Anim Practice 2001; 17(2):301–314. DOI: https://doi.org/10.1016/S0749-0720(15)30030-X
Ortega N, Caro M, Gallego C, Murcia-Belmonte A, Alvarez D, del Rio L, Cuello F, Buendía A, Salinas J. Isolation of Chlamydia abortus from a laboratory worker diagnosed with atypical pneumonia. Irish Vet J 2016; 69(8):1-4. DOI: https://doi.org/10.1186/s13620-016-0067-4
Oseikria M, Pellerin J, Rodolakis A, Vorimore F, Laroucau K, Bruyas J, Roux C, Michaud S, Larrat M, Fieni F. Can Chlamydia abortus be transmitted by embryo transfer in goats? Theriogenology 2016 (86): 1482–1488. DOI: http://dx.doi.org/10.1016/j.theriogenology.2016.05.006
Pantchev A, Sting R, Bauerfeind R, Tyczka J, Sachse K. New real-time PCR tests for species-specific detection of Chlamydophila psittaci and Chlamydophila abortus from tissue samples. Vet J 2009; 181(2):145–150. DOI: https://doi.org/10.1016/j.tvjl.2008.02.025
Papp JR, Shewen PE, Gartley CJ. Abortion and subsequent excretion of chlamydiae from the reproductive tract of sheep during estrus. Infect and Immun 1994; 62(9):3786–3792. DOI: https://doi.org/10.1128/iai.62.9.3786-3792.1994
Rocchi MS, Wattegedera S, Meridiani I, Entrican G. Protective adaptive immunity to Chlamydophila abortus infection and control of ovine enzootic abortion (OEA). Vet Microbiol 2009; 135(1–2):112–121. DOI: https://doi.org/10.1016/j.vetmic.2008.09.030
Rodolakis A, Laroucau K. Chlamydiaceae and chlamydial infections in sheep or goats. Vet Microbiol 2015; 181(1–2):107–118. DOI: https://doi.org/10.1016/j.vetmic.2015.07.010
Rojas M, Fort M, Bettermann S, Entrocassi C, Costamagna S, Sachse K, Rodríguez M. Detección de Chlamydia abortus en pérdidas reproductivas de bovinos en la provincial de La Pampa, Argentina. Rev Argent Microbiol 2018; 50 (3):269-274. DOI: https://doi.org/10.1016/j.ram.2017.10.002
Salinas J, Sanchez J, Buendia AJ, Souriau A, Rodolakis A, Bernabé A, Cuello F. The LPS localization might explain the lack of protection of LPS-specific antibodies in abortion-causing Chlamydia psittaci infections. Res Microbiol 1994; 145(8). DOI: https://doi.org/10.1016/0923-2508(94)90078-7
Sambrook J, Fritsch EF, MT. Molecular cloning a laboratory manual, Volumes 1, 2 and 3. 2nd ed. Cold Spring Harbor Laboratory Press; 1989; ISBN:0-87969-309-6. URL: https://is.muni.cz/publication/372112/en/Molecular-Cloning-A-laboratory-Manual/Sambrook-Fritsch-Maniatis
Selim A, Manaa E, Waheed R, Alanazi A. Seroprevalence, associated risk factors analysis and first molecular characterization of Chlamydia abortus among Egyptian sheep 2020; 74. DOI: https://doi.org/10.1016/j.cimid.2020.101600
Stuen S, Longbottom D. Treatment and control of chlamydial and rickettsial infections in sheep and goats. Vet Clin N Am-Food Anim Pract 2011; 27(1): 213–233. DOI: https://doi.org/10.1016/j.cvfa.2010.10.017
Thomas R, Davison HC, Wilsmore AJ. Use of the IDEIA ELISA to detect Chlamydia psittaci (ovis) in material from aborted fetal membranes and milk from ewes affected by ovine enzootic abortion. British Vet J 1990; 146(4):364–367. DOI: https://doi.org/10.1016/S0007-1935(11)80031-X
Wattegedra SR, Livingstone M, Maley S, Rocchi M, Lee S, Pang Y, Wheelhouse NM, Aitchison K, Palarea AJ, Buxton D, Longbottom D, Entrican G. Defining immune correlates during latent and active chlamydial infection in sheep. Vet Res 2020; 51(2):75. DOI: https://doi.org/10.1186/s13567-020-00798-6.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Colombiana de Ciencias Pecuarias
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors enable RCCP to reprint the material published in it.
The journal allows the author(s) to hold the copyright without restrictions, and will allow the author(s) to retain publishing rights without restrictions.