An overview of Avian Influenza in Colombia: A One Health Perspective on Surveillance, Intervention, and Policy Integration
DOI:
https://doi.org/10.17533/udea.rccp.e357741Keywords:
avian influenza, Colombia, global health, multisectoral collaboration, One Health, public health policiesAbstract
Avian influenza (AI) remains a significant global health issue, threatening animal and human populations. While only type A influenza viruses (IAV) are known to infect birds naturally, various combinations of IAV subtypes have been discovered in avian species. This paper consolidates existing research to offer a comprehensive view of the avian flu situation in Colombia. It emphasizes the significance of embracing a comprehensive One Health approach and recognizes the interconnected nature of human, animal, and environmental health. Through enhanced collaboration among veterinary, medical, and ecological sectors, the manuscript advocates for a proactive strategy to monitor, mitigate, and respond to AI outbreaks. This document also highlights the role of migratory birds in potentially spreading AI across borders, underscoring the necessity for international cooperation and interdisciplinary efforts to monitor bird migration patterns, strengthen surveillance measures, and minimize transmission risks. The review identifies potential hotspots and vulnerable regions susceptible to highly pathogenic AI outbreaks based on specific cases within Colombia. Insights gathered from this analysis can guide targeted interventions, including early detection systems, vaccination drives, and community engagement initiatives. Ultimately, this work emphasizes the importance of integrating AI considerations into public health policies. By embracing One Health principles, policymakers can better anticipate and mitigate the impact of potential outbreaks, safeguarding both animal and human populations. The manuscript offers valuable insights into the multifaceted challenges of AI in Colombia and contributes to the global discourse on One Health strategies.
Downloads
References
Daszak P, Cunningham AA, Hyatt AD. Emerging Infectious Diseases of Wildlife-- Threats to Biodiversity and Human Health. Science. 2000;287: 443–449. https://doi.org/10.1126/science.287.5452.443
Cox NJ, Subbarao K. Global Epidemiology of Influenza: Past and Present. Annu Rev Med. 2000;51: 407–421. https://doi.org/10.1146/annurev.med.51.1.407
Lam TT, Pybus OG. Genomic surveillance of avian-origin influenza A viruses causing human disease. Genome Med. 2018;10: 50. https://doi.org/10.1186/s13073-018-0560-3
Vandegrift KJ, Sokolow SH, Daszak P, Kilpatrick AM. Ecology of avian influenza viruses in a changing world. Ann N Y Acad Sci. 2010;1195: 113–128. https://doi.org/10.1111/j.1749-6632.2010.05451.x
Influenza Virus. Transfus Med Hemother. 2009;36: 32–39. https://doi.org/10.1159/000197314
Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56: 152–179. https://doi.org/10.1128/mr.56.1.152-179.1992
Kackos CM, Webby RJ. Influenza virus. Reference Module in Life Sciences. Elsevier; 2023. https://doi.org/10.1016/b978-0-12-822563-9.00101-3
Fereidouni S, Starick E, Karamendin K, Genova CD, Scott SD, Khan Y, et al. Genetic characterization of a new candidate hemagglutinin subtype of influenza A viruses. Emerg Microbes Infect. 2023;12: 2225645. https://doi.org/10.1080/22221751.2023.2225645
Philippa JD. Avian Influenza. Zoo and Wild Animal Medicine. Elsevier; 2008. pp. 79-cp1. https://doi.org/10.1016/B978-141604047-7.50013-0
Rashid F, Xie Z, Li M, Xie Z, Luo S, Xie L. Roles and functions of IAV proteins in host immune evasion. Front Immunol. 2023;14: 1323560. https://doi.org/10.3389/fimmu.2023.1323560
Lu L, Lycett SJ, Leigh Brown AJ. Reassortment patterns of avian influenza virus internal segments among different subtypes. BMC Evol Biol. 2014;14. https://doi.org/10.1186/1471-2148-14-16
Bahl J, Vijaykrishna D, Holmes EC, Smith GJD, Guan Y. Gene flow and competitive exclusion of avian influenza A virus in natural reservoir hosts. Virology. 2009;390: 289–297. https://doi.org/10.1016/j.virol.2009.05.002
Korteweg C, Gu J. Pathology, Molecular Biology, and Pathogenesis of Avian Influenza A (H5N1) Infection in Humans. Am J Pathol. 2008;172: 1155–1170. https://doi.org/10.2353/ajpath.2008.070791
de Wit E, Kawaoka Y, de Jong MD, Fouchier RAM. Pathogenicity of highly pathogenic avian influenza virus in mammals. Vaccine. 2008;26: D54–D58. https://doi.org/10.1016/j.vaccine.2008.07.072
Swayne DE, Pantin-Jackwood M. Pathogenicity of avian influenza viruses in poultry. Dev Biol . 2006;124: 61–67. Available: https://www.ncbi.nlm.nih.gov/pubmed/16447495
Alexander DJ. A review of avian influenza in different bird species. Vet Microbiol. 2000;74: 3–13. https://doi.org/10.1016/s0378-1135(00)00160-7
Donatelli I, Campitelli L, Di Trani L, Puzelli S, Selli L, Fioretti A, et al. Characterization of H5N2 influenza viruses from Italian poultry. J Gen Virol. 2001;82: 623–630. https://doi.org/10.1099/0022-1317-82-3-623
Hulse DJ, Webster RG, Russell RJ, Perez DR. Molecular Determinants within the Surface Proteins Involved in the Pathogenicity of H5N1 Influenza Viruses in Chickens. J Virol. 2004;78: 9954–9964. https://doi.org/10.1128/JVI.78.18.9954-9964.2004
Steinhauer DA. Role of Hemagglutinin Cleavage for the Pathogenicity of Influenza Virus. Virology. 1999;258: 1–20. https://doi.org/10.1006/viro.1999.9716
Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus ADME, Fouchier RAM. Global Patterns of Influenza A Virus in Wild Birds. Science. 2006;312: 384–388. https://doi.org/10.1126/science.1122438
Wille M, Holmes EC. The Ecology and Evolution of Influenza Viruses. Cold Spring Harb Perspect Med. 2020;10: a038489. https://doi.org/10.1101/cshperspect.a038489
Sooryanarain H, Elankumaran S. Environmental Role in Influenza Virus Outbreaks. Annual Review of Animal Biosciences. 2015;3: 347–373. https://doi.org/10.1146/annurev-animal-022114-111017
Joseph U, Su YCF, Vijaykrishna D, Smith GJD. The ecology and adaptive evolution of influenza A interspecies transmission. Influenza Other Respi Viruses. 2017;11: 74–84. https://doi.org/10.1111/irv.12412
Kawaoka Y, Chambers TM, Sladen WL, Gwebster R. Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks? Virology. 1988;163: 247–250. https://doi.org/10.1016/0042-6822(88)90260-7
Yang Q, Wang B, Lemey P, Dong L, Mu T, Wiebe RA, et al. Synchrony of bird migration with global dispersal of avian influenza reveals exposed bird orders. Nat Commun. 2024;15: 1126. https://doi.org/10.1038/s41467-024-45462-1
Tian H, Zhou S, Dong L, Van Boeckel TP, Cui Y, Newman SH, et al. Avian influenza H5N1 viral and bird migration networks in Asia. Proc Natl Acad Sci U S A. 2015;112: 172–177. https://doi.org/10.1073/pnas.1405216112
Fourment M, Darling AE, Holmes EC. The impact of migratory flyways on the spread of avian influenza virus in North America. BMC Evol Biol. 2017;17. https://doi.org/10.1186/s12862-017-0965-4
Guinat C, Valenzuela Agüí C, Vaughan TG, Scire J, Pohlmann A, Staubach C, et al. Disentangling the role of poultry farms and wild birds in the spread of highly pathogenic avian influenza virus in Europe. Virus Evol. 2022;8: veac073. https://doi.org/10.1093/ve/veac073
Bahl J, Krauss S, Kühnert D, Fourment M, Raven G, Pryor SP, et al. Influenza A Virus Migration and Persistence in North American Wild Birds. PLoS Pathog. 2013;9: e1003570. https://doi.org/10.1371/journal.ppat.1003570
Slingenbergh J, Gilbert M, BALOGH de K, Wint W. Ecological sources of zoonotic diseases. Revue Scientifique et Technique de l’OIE. 2004;23: 467–484. https://doi.org/10.20506/rst.23.2.1492
Runstadler J, Hill N, Hussein ITM, Puryear W, Keogh M. Connecting the study of wild influenza with the potential for pandemic disease. Infect Genet Evol. 2013;17: 162–187. https://doi.org/10.1016/j.meegid.2013.02.020
FAO‐OIE‐WHO Joint Technical Consultation on Avian Influenza at the Human‐Animal Interface. Influenza Other Respi Viruses. 2010;4: 1–29. https://doi.org/10.1111/j.1750-2659.2009.00114.x
Mansour SMG, ElBakrey RM, Ali H, Knudsen DEB, Eid AAM. Natural infection with highly pathogenic avian influenza virus H5N1 in domestic pigeons (Columba livia) in Egypt. Avian Pathol. 2014;43: 319–324. https://doi.org/10.1080/03079457.2014.926002
Spackman E. The ecology of avian influenza virus in wild birds: What does this mean for poultry? Poult Sci. 2009;88: 847–850. https://doi.org/10.3382/ps.2008-00336
Shoham D, Jahangir A, Ruenphet S, Takehara K. Persistence of Avian Influenza Viruses in Various Artificially Frozen Environmental Water Types. Influenza Res Treat. 2012;2012: 1–11. https://doi.org/10.1155/2012/912326
Keeler SP, Berghaus RD, Stallknecht DE. PERSISTENCE OF LOW PATHOGENIC AVIAN INFLUENZA VIRUSES IN FILTERED SURFACE WATER FROM WATERFOWL HABITATS IN GEORGIA, USA. J Wildl Dis. 2012;48: 999–1009. https://doi.org/10.7589/2011-11-314
Causey D, Edwards SV. Ecology of Avian Influenza Virus in Birds. J Infect Dis. 2008;197: S29–S33. https://doi.org/10.1086/524991
Stallknecht DE, Shane SM, Kearney MT, Zwank PJ. Persistence of Avian Influenza Viruses in Water. Avian Dis. 1990;34: 406. https://doi.org/10.2307/1591428
Germeraad, Sanders, Hagenaars, Jong, Beerens, Gonzales. Virus Shedding of Avian Influenza in Poultry: A Systematic Review and Meta-Analysis. Viruses. 2019;11: 812. https://doi.org/10.3390/v11090812
Reemers SS, van Leenen D, Groot Koerkamp MJ, van Haarlem D, van de Haar P, van Eden W, et al. Early host responses to avian influenza A virus are prolonged and enhanced at transcriptional level depending on maturation of the immune system. Mol Immunol. 2010;47: 1675–1685. https://doi.org/10.1016/j.molimm.2010.03.008
Rehman S, Effendi MH, Witaningruma AM, Nnabuikeb UE, Bilal M, Abbas A, et al. Avian influenza (H5N1) virus, epidemiology and its effects on backyard poultry in Indonesia: a review. F1000Res. 2023;11: 1321. https://doi.org/10.12688/f1000research.125878.2
Blagodatski A, Trutneva K, Glazova O, Mityaeva O, Shevkova L, Kegeles E, et al. Avian influenza in wild birds and poultry: Dissemination pathways, monitoring methods, and virus ecology. Pathogens. 2021;10: 630. https://doi.org/10.3390/pathogens10050630
Simancas-Racines A, Cadena-Ullauri S, Guevara-Ramírez P, Zambrano AK, Simancas-Racines D. Avian influenza: Strategies to manage an outbreak. Pathogens. 2023;12. https://doi.org/10.3390/pathogens12040610
Afanador-Villamizar A, Gomez-Romero C, Diaz A, Ruiz-Saenz J. Avian influenza in Latin America: A systematic review of serological and molecular studies from 2000-2015. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0179573
Hill NJ, Bishop MA, Trovão NS, Ineson KM, Schaefer AL, Puryear WB, et al. Ecological divergence of wild birds drives avian influenza spillover and global spread. PLoS Pathog. 2022;18: e1010062. https://doi.org/10.1371/journal.ppat.1010062
Mohan R, Saif YM, Erickson GA, Gustafson GA, Easterday BC. Serologic and epidemiologic evidence of infection in turkeys with an agent related to the swine influenza virus. Avian Dis. 1981;25: 11–16. https://doi.org/10.2307/1589822
Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine. 2007;25: 5637–5644. https://doi.org/10.1016/j.vaccine.2006.10.051
Charostad J, Rezaei Zadeh Rukerd M, Mahmoudvand S, Bashash D, Hashemi SMA, Nakhaie M, et al. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Med Infect Dis. 2023;55: 102638. https://doi.org/10.1016/j.tmaid.2023.102638
Dutta P, Islam A, Sayeed MA, Rahman MA, Abdullah MS, Saha O, et al. Epidemiology and molecular characterization of avian influenza virus in backyard poultry of Chattogram, Bangladesh. Infect Genet Evol. 2022;105: 105377. https://doi.org/10.1016/j.meegid.2022.105377
Djurdjević B, Polaček V, Pajić M, Petrović T, Vučićević I, Vidanović D, et al. Highly pathogenic avian influenza H5N8 outbreak in backyard chickens in Serbia. Animals (Basel). 2023;13: 700. https://doi.org/10.3390/ani13040700
Abdelwhab EM, Hafez HM. An overview of the epidemic of highly pathogenic H5N1 avian influenza virus in Egypt: epidemiology and control challenges. Epidemiol Infect. 2011;139: 647–657. https://doi.org/10.1017/s0950268810003122
Gradisteanu Pircalabioru G, Iliescu FS, Mihaescu G, Cucu AI, Ionescu ON, Popescu M, et al. Advances in the rapid diagnostic of viral respiratory tract infections. Front Cell Infect Microbiol. 2022;12: 807253. https://doi.org/10.3389/fcimb.2022.807253
Wang R, Taubenberger JK. Methods for molecular surveillance of influenza. Expert Rev Anti Infect Ther. 2010;8: 517–527. https://doi.org/10.1586/eri.10.24
Madhav N, Oppenheim B, Gallivan M, Mulembakani P, Rubin E, Wolfe N. Pandemics: Risks, impacts, and mitigation. Disease Control Priorities, Third Edition (Volume 9): Improving Health and Reducing Poverty. The World Bank; 2017. pp. 315–345. https://doi.org/10.1596/978-1-4648-0527-1_ch17
Meadows AJ, Stephenson N, Madhav NK, Oppenheim B. Historical trends demonstrate a pattern of increasingly frequent and severe spillover events of high-consequence zoonotic viruses. BMJ Glob Health. 2023;8: e012026. https://doi.org/10.1136/bmjgh-2023-012026
Kojima N, Adlhoch C, Mitja O, Dat VQ, Lescano AG, Klausner JD. Building global preparedness for avian influenza. Lancet. 2024;403: 2461–2465. https://doi.org/10.1016/S0140-6736(24)00934-6
Abdelwhab EM, Mettenleiter TC. Zoonotic animal influenza virus and potential mixing vessel hosts. Viruses. 2023;15. https://doi.org/10.3390/v15040980
Kang M, Li H-P, Tang J, Wang X-Y, Wang L-F, Baele G, et al. Changing epidemiological patterns in human avian influenza virus infections. Lancet Microbe. 2024; 100918. https://doi.org/10.1016/S2666-5247(24)00158-7
Smith GJD, Bahl J, Vijaykrishna D, Zhang J, Poon LLM, Chen H, et al. Dating the emergence of pandemic influenza viruses. Proceedings of the National Academy of Sciences. 2009;106: 11709–11712. https://doi.org/10.1073/pnas.0904991106
To KKW, Chan JFW, Chen H, Li L, Yuen K-Y. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities. Lancet Infect Dis. 2013;13: 809–821. https://doi.org/10.1016/S1473-3099(13)70167-1
Bao C-J, Cui L-B, Zhou M-H, Hong L, Gao GF, Wang H. Live-animal markets and influenza A (H7N9) virus infection. N Engl J Med. 2013;368: 2337–2339. https://doi.org/10.1056/nejmc1306100
Lam TT-Y, Wang J, Shen Y, Zhou B, Duan L, Cheung C-L, et al. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature. 2013;502: 241–244. https://doi.org/10.1038/nature12515
Lebarbenchon C, Feare CJ, Renaud F, Thomas F, Gauthier-Clerc M. Persistence of highly pathogenic avian influenza viruses in natural ecosystems. Emerg Infect Dis. 2010;16: 1057–1062. https://doi.org/10.3201/eid1607.090389
Pepin KM, Wang J, Webb CT, Hoeting JA, Poss M, Hudson PJ, et al. Anticipating the prevalence of avian influenza subtypes H9 and H5 in live-bird markets. PLoS One. 2013;8: e56157. https://doi.org/10.1371/journal.pone.0056157
Chen Z, Li K, Luo L, Lu E, Yuan J, Liu H, et al. Detection of avian influenza A(H7N9) virus from live poultry markets in Guangzhou, China: a surveillance report. PLoS One. 2014;9: e107266. https://doi.org/10.1371/journal.pone.0107266
Graham JP, Leibler JH, Price LB, Otte JM, Pfeiffer DU, Tiensin T, et al. The animal-human interface and infectious disease in industrial food animal production: rethinking biosecurity and biocontainment. Public Health Rep. 2008;123: 282–299. https://doi.org/10.1177/003335490812300309
Jewitt S, Smallman-Raynor M, McClaughlin E, Clark M, Dunham S, Elliott S, et al. Exploring the responses of smallscale poultry keepers to avian influenza regulations and guidance in the United Kingdom, with recommendations for improved biosecurity messaging. Heliyon. 2023;9: e19211. https://doi.org/10.1016/j.heliyon.2023.e19211
Islam A, Rahman MZ, Hassan MM, Epstein JH, Klaassen M. Farm biosecurity practices affecting avian influenza virus circulation in commercial chicken farms in Bangladesh. One Health. 2024;18: 100681. https://doi.org/10.1016/j.onehlt.2024.100681
Islam A, Islam S, Amin E, Shano S, Samad MA, Shirin T, et al. Assessment of poultry rearing practices and risk factors of H5N1 and H9N2 virus circulating among backyard chickens and ducks in rural communities. PLoS One. 2022;17: e0275852. https://doi.org/10.1371/journal.pone.0275852
Grace D, Knight-Jones TJD, Melaku A, Alders R, Jemberu WT. The public health importance and management of infectious poultry diseases in smallholder systems in Africa. Foods. 2024;13. https://doi.org/10.3390/foods13030411
Sun Y, Shen Y, Zhang X, Wang Q, Liu L, Han X, et al. A serological survey of canine H3N2, pandemic H1N1/09 and human seasonal H3N2 influenza viruses in dogs in China. Vet Microbiol. 2014;168: 193–196. https://doi.org/10.1016/j.vetmic.2013.10.012
Paternina D, Herazo R, Oviedo M, Mattar S. Dramatic re-emergence of avian influenza in Colombia and Latin America. Travel Med Infect Dis. 2024;59: 102711. https://doi.org/10.1016/j.tmaid.2024.102711
Hinjoy S, Thumrin P, Sridet J, Chaiyaso C, Suddee W, Thukngamdee Y, et al. An overlooked poultry trade network of the smallholder farms in the border provinces of Thailand, 2021: implications for avian influenza surveillance. Front Vet Sci. 2024;11: 1301513. https://doi.org/10.3389/fvets.2024.1301513
European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC), Adlhoch C, Alm E, Enkirch T, Lamb F, et al. Drivers for a pandemic due to avian influenza and options for One Health mitigation measures. EFSA J. 2024;22: e8735. https://doi.org/10.2903/j.efsa.2024.8735
Vora NM, Hannah L, Walzer C, Vale MM, Lieberman S, Emerson A, et al. Interventions to reduce risk for pathogen spillover and early disease spread to prevent outbreaks, epidemics, and pandemics. Emerg Infect Dis. 2023;29: 1–9. https://doi.org/10.3201/eid2903.221079
Taubenberger JK, Morens DM. Influenza: the once and future pandemic. Public Health Rep. 2010;125 Suppl 3: 16–26. Available: https://www.ncbi.nlm.nih.gov/pubmed/20568566
Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, et al. Pandemic potential of a strain of influenza A (H1N1): Early findings. Science. 2009;324: 1557–1561. https://doi.org/10.1126/science.1176062
Peiris JSM, de Jong MD, Guan Y. Avian Influenza Virus (H5N1): a Threat to Human Health. Clin Microbiol Rev. 2007;20: 243–267. https://doi.org/10.1128/CMR.00037-06
Farley MM. 2009 H1N1 influenza: a twenty-first century pandemic with roots in the early twentieth century. Am J Med Sci. 2010;340: 202–208. https://doi.org/10.1097/MAJ.0b013e3181e937b0
DeJesus E, Costa-Hurtado M, Smith D, Lee D-H, Spackman E, Kapczynski DR, et al. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards. Virology. 2016;499: 52–64. https://doi.org/10.1016/j.virol.2016.08.036
Huang P, Sun L, Li J, Wu Q, Rezaei N, Jiang S, et al. Potential cross-species transmission of highly pathogenic avian influenza H5 subtype (HPAI H5) viruses to humans calls for the development of H5-specific and universal influenza vaccines. Cell Discov. 2023;9: 58. https://doi.org/10.1038/s41421-023-00571-x
Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, et al. Characterization of an Avian Influenza A (H5N1) Virus Isolated from a Child with a Fatal Respiratory Illness. Science. 1998;279: 393–396. https://doi.org/10.1126/science.279.5349.393
Webster RG, Peiris M, Chen H, Guan Y. H5N1 Outbreaks and Enzootic Influenza. Emerg Infect Dis. 2006;12: 3–8. https://doi.org/10.3201/eid1201.051024
Ly H. Highly pathogenic avian influenza H5N1 virus infections of dairy cattle and livestock handlers in the United States of America. Virulence. 2024;15. https://doi.org/10.1080/21505594.2024.2343931
CDC. Highly Pathogenic Avian Influenza A (H5N1) Virus Infection Reported in a Person in the U.S. In: Centers for Disease Control and Prevention [Internet]. 2024 [cited 2024]. Available: https://www.cdc.gov/media/releases/2024/p0401-avian-flu.html
CDC. Considerations for Veterinarians: Evaluating and Handling of Cats Potentially Exposed to Highly Pathogenic Avian Influenza A(H5N1) Virus. In: Centers for Disease Control and Prevention [Internet]. 2024 [cited 2024]. Available: https://www.cdc.gov/flu/avianflu/veterinarians-handling-cats.htm#:~:text=HPAI%20A(H5N1)%20infections%20in,and%20some%20had%20fatal%20outcomes.
USDA. Highly Pathogenic Avian Influenza (HPAI) H5N1 Detections in Alpacas. In: United States Department of Agriculture [Internet]. 2024 [cited 2024]. Available: https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections/mammals/highly-pathogenic-avian
Xie H, Sun Q, Song W. Exploring the ecological effects of rural land use changes: A bibliometric overview. Land (Basel). 2024;13: 303. https://doi.org/10.3390/land13030303
Myers SS. Land Use Change and Human Health. Integrating Ecology and Poverty Reduction. New York, NY: Springer New York; 2012. pp. 167–186. https://doi.org/10.1007/978-1-4419-0633-5_11
Ruiz S, Jimenez-Bluhm P, Di Pillo F, Baumberger C, Galdames P, Marambio V, et al. Temporal dynamics and the influence of environmental variables on the prevalence of avian influenza virus in main wetlands in central Chile. Transbound Emerg Dis. 2021;68: 1601–1614. https://doi.org/10.1111/tbed.13831
Ruiz-Philipps SA, Baumberger C, Jimenez-Bluhm P, Marambio V, Salazar C, Hamilton-West C. Factores ambientales relacionados con la presentación de virus influenza A en aves silvestres. Rev MVZ Cordoba. 2020;25: e1845. https://doi.org/10.21897/rmvz.1845
Burrough ER, Magstadt DR, Petersen B, Timmermans SJ, Gauger PC, Zhang J, et al. Highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus infection in domestic dairy cattle and cats, United States, 2024. Emerg Infect Dis. 2024;30: 1335–1343. https://doi.org/10.3201/eid3007.240508
Kappes A, Tozooneyi T, Shakil G, Railey AF, McIntyre KM, Mayberry DE, et al. Livestock health and disease economics: a scoping review of selected literature. Front Vet Sci. 2023;10: 1168649. https://doi.org/10.3389/fvets.2023.1168649
Jones JC, Sonnberg S, Webby RJ, Webster RG. Influenza A(H7N9) virus transmission between finches and poultry. Emerg Infect Dis. 2015;21: 619–628. https://doi.org/10.3201/eid2104.141703
Liu D, Shi W, Shi Y, Wang D, Xiao H, Li W, et al. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet. 2013;381: 1926–1932. https://doi.org/10.1016/S0140-6736(13)60938-1
Lee SS, Wong NS, Leung CC. Exposure to avian influenza H7N9 in farms and wet markets. Lancet. 2013;381: 1815. https://doi.org/10.1016/S0140-6736(13)60949-6
Jori F, Hernandez-Jover M, Magouras I, Dürr S, Brookes VJ. Wildlife-livestock interactions in animal production systems: what are the biosecurity and health implications? Anim Front. 2021;11: 8–19. https://doi.org/10.1093/af/vfab045
Viña A, Liu J. Effects of global shocks on the evolution of an interconnected world. Ambio. 2023;52: 95–106. https://doi.org/10.1007/s13280-022-01778-0
Maes DGD, Dewulf J, Piñeiro C, Edwards S, Kyriazakis I. A critical reflection on intensive pork production with an emphasis on animal health and welfare. J Anim Sci. 2020;98: S15–S26. https://doi.org/10.1093/jas/skz362
Gilbert M, Xiao X, Robinson TP. Intensifying poultry production systems and the emergence of avian influenza in China: a “One Health/Ecohealth” epitome. Arch Public Health. 2017;75: 48. https://doi.org/10.1186/s13690-017-0218-4
Kessler S, Harder TC, Schwemmle M, Ciminski K. Influenza A viruses and zoonotic events-are we creating our own reservoirs? Viruses. 2021;13: 2250. https://doi.org/10.3390/v13112250
Ortiz DI, Piche-Ovares M, Romero-Vega LM, Wagman J, Troyo A. The impact of deforestation, urbanization, and changing land use patterns on the ecology of mosquito and tick-borne diseases in Central America. Insects. 2021;13: 20. https://doi.org/10.3390/insects13010020
Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Dixon MA, Bennett M, et al. Ecology of zoonoses: natural and unnatural histories. Lancet. 2012;380: 1936–1945. https://doi.org/10.1016/S0140-6736(12)61678-X
Lane MA, Walawender M, Carter J, Brownsword EA, Landay T, Gillespie TR, et al. Climate change and influenza: A scoping review. J Clim Chang Health. 2022;5: 100084. https://doi.org/10.1016/j.joclim.2021.100084
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Colombiana de Ciencias Pecuarias

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors enable RCCP to reprint the material published in it.
The journal allows the author(s) to hold the copyright without restrictions, and will allow the author(s) to retain publishing rights without restrictions.