Methane production from four forages at three maturity stages in a ruminal in vitro system
DOI:
https://doi.org/10.17533/udea.rccp.v31n2a05Keywords:
grassland systems, kikuyu, lotus, methanogenesis, red clover, ryegrassAbstract
Background: Forage characteristics can modify in vitro methane production. There is little information about in vitro methane production of legumes and grasses at different maturity stages in tropical highland grazing systems. Objective: To evaluate the effect of species and forage maturity on in vitro methane production. Methods: Four forage species grown in tropical highlands of Colombia, two grasses: Kikuyu (Cenchrus clandestinus, previously named Pennisetum clandestinum) and ryegrass (Lolium perenne var. Samsum), and two legumes: Lotus (Lotus uliginosus var. Maku) and red clover (Trifolium pratense) were harvested in two paddocks at three maturity stages (young, intermediate, and mature). In vitro 48 h gas production was measured and methane proportion in gas was quantified by gas chromatography. Data were analysed as a randomized complete block (paddocks) design with a factorial arrangement 4×3 (4 species × 3 maturity stages) using the GLM procedure of SAS®. Results: Lotus produced less methane (p<0.01) than ryegrass, clover, and kikuyu (35.5 vs 64.7, 55.7 or 51.4 mL/g degraded organic matter, respectively). Younger forages produced less methane than intermediate and mature forages (42.8 vs 56.3 and 56.4 mL/g degraded organic matter, respectively). Cellulose concentration and organic matter degradability explained 67% (p<0.01) of methane production. Conclusion: Forage composition, presence of condensed tannins, and changes in fermentation patterns may explain the differences observed in in vitro methane production among species and maturity stages.
Downloads
References
AOAC. Official methods of analysis. Association of Official Analytical Chemist. 19th edition. Arlington, VA, USA. 2005.
Archimède H, Eugène M, Marie C, Boval M, Martin C, Morgavi DP, Lecomte P, Doreau M. Comparison of methane production between C3 y C4 grass and legume. Anim Feed Sci Tech 2011; 166-167:54-64.
Betancourt M. Efecto de la melaza, ácido fórmico y tiempo de fermentación sobre la ensilabilidad de la Leucaena Leucocephala. Master Thesis. Facultad de Agronomía. Universidad de Zulia. Maracaibo (Venezuela); 2001.
Blümmel M, Lebzien P. Predicting ruminal microbial efficiencies of dairy ration by in vitro techniques. Livest Prod Sci 2001; 68:107-117.
Goering HK, Van Soest PJ. Forage fiber analysis (apparatus, reagents, procedures, and some applications). Agricultural Handbook, n° 379. ARS-USDE. Washington (USA); 1970.
Hess HD, Mera ML, Tiemann TT, Lascano CE, Kreuzer M. In vitroassessment of the suitability of replacing the low-tannin legume Vigna unguiculata with the tanniniferous legumes Leucaena leucocephala, Flemingia macrophylla or Calliandra calothyrsus in a tropical grass diet. Anim Feed Sci Tech 2008; 147:105-115.
Hindrichsen IK, Wettstein HR, Machmüller A, Jörg BJ, Kreuzer M. Effects of the carbohydrate composition of feed concentrates on methane emission from dairy cows and their slurry. Environ Monit Assess 2005; 107:329-350.
IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Cachauri RK; Meyers LA, editors. Geneva (Switzerland); 2014.
Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci 1995; 73:2483-2492.
Lee C, Beachemin A. A review of feeding supplementary nitrate to ruminant animal: Nitrate toxicity, methane emissions, and production performance. Can J Anim Sci 2014; 94:557-570.
Leng RA. The rumen- a fermentation vat or a series of organized structured microbial consortia: Implications for the mitigation of enteric methane production by feed additives. Livest Res Rural Dev 2011; 23:Art 258.
López S. In vitro and in situ techniques for estimating digestibility. In: Dijkstra J; Forbes JM, France J, editors. Quantitative aspects of ruminant digestion and metabolism. 2nd ed. Wallingford (UK): CABI Publishing; 2005. p. 87-122.
Lovett DK, McGilloway D, Bortolozzo A, Hawkins M, Callan J, Flynn B, O ́Mara FP. In vitro fermentation patterns and methane production as influenced by cultivar and season of harvest of Lolium perenne. Grass Forage Sci 2005; 61:9-21.
Lovett DK, Bortolozzo A, Conaghan P, O ́Kiely P, O ́Mara FP. In vitro total and methane gas production as influenced by rate of nitrogen application, season of harvest and perennial ryegrass cultivar. Grass Forage Sci 2004; 59:227-232.
Moss A, Jouany JP, Newbold J. Methane production by ruminants: Its contribution to global warming. Ann Zootechnology 2000; 29:231-253.
Murphy MR, Baldwin RL, Koong LJ. Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. J Anim Sci 1982; 55:411-421.
Navarro-Villa A, O ́Brien M, López S, Boland TM, O ́Kiely P. In vitro rumen methane output of red clover and perennial ryegrass assayed using the gas production technique (GPT). Anim Feed Sci Tech 2011; 168:152-164.
Niggli U, Fliebbach A, Hepperly P, Scialabba N. Low greenhouse gas agriculture: Mitigation and adaptation potential of sustainable farming systems. FAO. Roma (Italy); 2009.
Parra DM, Avila MJ. Determinación de los parámetros fisiológicos y dinámica ruminal de bovinos en condiciones de poli-túnel para evaluar emisiones de metano en trópico alto y bajo colombiano. Animal Production Thesis. Programa de Zootecnia. Facultad de Ciencias Agropecuarias. Universidad de Cundinamarca. Fusagasugá (Colombia); 2010.
Pelchen A, Peters KJ. Methane emissions from sheep. Small Rumin Res 1998; 27:137-150.
Pell AN, Scofield P. Computerized monitoring of gas production to measure forage digestion in vitro. J Dairy Sci 1993; 76:1063-1073.
Purcell PJ, O ́Brien M, Navarro-Villa A, Boland TM, McEvoy M, Grogan D, O ́Kiely P. In vitro rumen methane output of perennial ryegrass varieties and perennial grass species harvested throughout the growing season. Grass Forage Sci 2012; 67:280-298.
Purcell PJ, O ́Brien M, Boland TM, O ́Donovan M, O ́Kiely P. Impacts of herbage mass and sward allowance of perennial ryegrass sampled throughout the growing season on in vitro rumen methane production. Anim Feed Sci Tech 2011; 166-167:405-411.
SAS®, Statistical Analysis Systems. SAS/STAT®. User guide. Version 9.2. Cary (NC, USA): SAS Institute Incorporation; 2008.
Singh S, Kushwaha BP, Nag SK, Mishra AK, Singh A, Anele UY. In vitro ruminal fermentation, protein and carbohydrate fractionation, methane production and prediction of twelve commonly used Indian green forages. Anim Feed Sci Tech 2012;178(1):2-11.
Sniffen CJ, O ́Connor JD, Van Soest PJ, Fox DG, Russell JB. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J Anim Sci 1992; 70:3562-3577.
Stewart CS, Flint HJ, Bryant MP. The rumen bacteria. In: Hobson PN, Stewart CS, editors. The rumen microbial ecosystem. London (UK): Blackie Academic & Professional; 1997. p. 10-72.
Tavendale MH, Meagher L, Pacheco D, Walker N, Attwood GT, Sivakumaran S. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim Feed Sci Tech 2005; 123-124:403-419.
Terrill TH, Rowan AM, Douglas GB, Barry TN. Determination of extractable and bound condensed tannin concentration in forage plants, protein concentrated meals and cereal grains. J Sci Food Agr 1992; 58:321-329.
Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. A simple gas method using a pressure transducer to determine the fermentation kinetics of the ruminant feeds. Anim Feed Sci Tech 1994; 48: 185-197.
Tiemann TT, Avila P, Ramírez G, Lascano CE, Kreuzer M, Hess HD. In vitro ruminal fermentation of tanniferous tropical plants: Plant-specific tannin effects and counteracting efficiency of PEG. Anim Feed Sci Tech 2008; 146:222-241.
Treviño J, Hernández M. Efecto del estado de madurez de la planta sobre la composición de la fracción nitrogenada de la alfalfa de Aragón (Medicago sativa L.). Pastos 1978; 8(1):133-139.
Ulyatt MJ, Lassey KR, Shelton ID, Walker CF. Methane emissions from dairy cows and wether sheep fed subtropical grass-dominant pastures in midsummer in New Zealand. New Zeal J Agr Res 2004; 45:227-234.
Van Soest PJ. Nutritional ecology of the ruminant. 2nd edition. NY (USA): Cornell University Press; 1994.
Van Soest PJ, Roberton J, Lewis B. Methods for dietary fiber, neutral fiber and no starch polysaccharides in relation to nutrition. J Dairy Sci 1991; 74:3583-3597.
Vargas J, Cárdenas E, Pabón M, Carulla J. Emisión de metano entérico en rumiantes en pastoreo. Arch Zootec 2012; 61(R):51-66.
Waghorn G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim Feed Sci Tech 2008; 147:116-139.
Woodward SL, Waghorn GC, Laboyrie PG. 2004. Condensed tannins in birdsfoot trefoil (Lotus corniculatus) reduce methane emissions from dairy cows. Proc New Zeal Soc An 2004; 64:160-164.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Revista Colombiana de Ciencias Pecuarias
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors enable RCCP to reprint the material published in it.
The journal allows the author(s) to hold the copyright without restrictions, and will allow the author(s) to retain publishing rights without restrictions.