Dietary addition of curcumin favors weight gain and has antioxidant, antiinflammatory and anticoccidial action in dairy calves

Authors

  • Patrícia Glombowsky Santa Catarina State University
  • Andreia Volpato Santa Catarina State University
  • Gabriela Campigotto Santa Catarina State University
  • Natan M. Soldá Santa Catarina State University
  • Daiane da S. dos Santo Santa Catarina State University
  • Nathieli B. Bottari Federal University of Santa Maria
  • Maria Rosa C. Schetinger Federal University of Santa Maria
  • Vera M. Morsch Federal University of Santa Maria
  • Fernanda Rigon Santa Catarina State University
  • Ana Luiza B. Schogor Santa Catarina State University
  • Aleksandro S. Da Silva Santa Catarina State University, Federal University of Santa Maria

DOI:

https://doi.org/10.17533/udea.rccp.v33n1a02

Keywords:

animal stress, antioxidants, calves, cattle growth, curcumin, Eimeria, parasitology, supplementation

Abstract

Background: Curcumin has been used as an additive in the diet of animals in recent years due to the potent medicinal properties of this molecule. Objective: To evaluate whether the addition of curcumin to the diet of calves at different phases (pre- and post-weaning) has a positive effect on metabolic profile, performance, and anti-coccidian action. Methods: Thirtythree Holstein calves were selected at various phases of development: Experiment 1 (E1: n=10) 18±7 (pre-weaning), Experiment 2 (E2: n=11) 64±4 (pre-weaning) and Experiment 3 (E3: n=12) 95±8 (post-weaning) days of life. The calves were separated in three groups according to their phase of development. In each experiment, animals were divided into two sub-groups: control and curcumin. The curcumin groups received 200 mg of additive per animal/day either in milk (pre-weaning) or concentrate (post-weaning). Fecal collections were performed on days 0, 10 and 15 of the experiment to count Eimeria oocysts per gram of feces and to perform fecal score analysis. Complete blood counts, oxidant and antioxidant profiles, protein metabolism markers, lipid levels, glucose levels, and animal weights were measured. Analyses of digestibility and composition of the diet used in Experiment 3 (post-weaning) were also performed. Results: Independent of phase, animals that received curcumin had greater weight gain on days 0 to 15 (E1, E2 and E3 p=0.04, 0.001 and 0.001, respectively), probably due to the increased digestibility of hay and concentrate at 72h (p=0.03 and 0.02, respectively). The supplemented calves had lower level of oxidants (thiobarbituric acid reactive substances –TBARS- and reactive oxygen species –ROS-), indicating that free radical levels in serum and lipid peroxidation were lower. This was probably due to increased enzymatic antioxidants gluthatione S-transferase (E1, E2 and E3 p=0.001, 0.001 and 0.02, respectively), catalase (E1 p=0.001) and superoxide dismutase (E3 p=0.001) in treated animals at day 15. Furthermore, calves receiving curcumin had lower numeric number of Eimeria infection during the experimental period, and the difference was significant in day 15 (E1 and E2 p=0.02, and 0.001, respectively). Conclusion: Curcumin supplementation to dairy calves has coccidiostatic potential, favoring weight gain.

|Abstract
= 973 veces | HTML
= 0 veces| | PDF
= 635 veces|

Downloads

Download data is not yet available.

Author Biographies

Patrícia Glombowsky, Santa Catarina State University

Postgraduate Program in Zootechnics, Santa Catarina State University (UDESC), Chapecó, Santa Catarina, Brazil.

Andreia Volpato, Santa Catarina State University

Postgraduate Program in Zootechnics, State University of Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil.

Gabriela Campigotto, Santa Catarina State University

Postgraduate Program in Zootechnics, State University of Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil.

Natan M. Soldá, Santa Catarina State University

Postgraduate Program in Zootechnics, State University of Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil.

Daiane da S. dos Santo, Santa Catarina State University

Department of Zootechnics, State University of Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil.

Nathieli B. Bottari, Federal University of Santa Maria

Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.

Maria Rosa C. Schetinger, Federal University of Santa Maria

Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.

Vera M. Morsch, Federal University of Santa Maria

Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.

Fernanda Rigon, Santa Catarina State University

Department of Zootechnics, State University of Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil.

Ana Luiza B. Schogor, Santa Catarina State University

Postgraduate Program in Zootechnics, State University of Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil. Department of Zootechnics, State University of Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil.

Aleksandro S. Da Silva, Santa Catarina State University, Federal University of Santa Maria

Postgraduate Program in Zootechnics, State University of Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil. Department of Zootechnics, State University of Santa Catarina (UDESC), Chapecó, Santa Catarina, Brazil. Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.

References

Alcalde CR, Machado RM, Santos GT, Picolli R, Jobim CC. Digestibilidade in vitro de alimentos cominóculos de líquido de rúmen ou de fezes de bovinos. Acta Scient: Anim Sci 2001; 23:917-921. http://dx.doi.org/10.4025/actascianimsci.v23i0.2645.

Ali SF, Lebel CP,Bondy SC. Reactive oxygen species formation as a biomarker of methylmercury andtrimethyltin neurotoxicity. Neurotoxicol 1992; 113:637-648.

Almeida LP, Naghetini CC, Nunan EA, Junqueira RG, Glória MBA. In vitro antimicrobial activity of the ground rhizome, curcuminoid pigments and essential oil of Curcuma longa L. Cien Agrotec 2008; 32:875-881. http://dx.doi.org/10.1590/S1413-70542008000300026.

Araujo CAC, Leon LL. Biological Activities of Curcuma longa L. MemInst Oswaldo Cruz 2001;96: 723-728. http://dx.doi.org/10.1590/S0074-02762001000500026.

Bezerra PQM, Matos MFR, Druzian JI, Nunes IL. Estudo prospectivo da Curcuma longa L. com ênfase na aplicação como corantes de alimentos. Caderno de Prospecção 2013; 6:366-378. http://dx.doi.org/10.9771/S.CPROSP.2013.006.0041.

Butler JA, SicklesSA, Johanns CJ,Rosenbusch RF. Pasteurization of discard mycoplasma mastitic milk used to feed calves: thermal effects on various mycoplasma. J Dairy Sci 2000; 83:2285-2288. http://dx.doi.org/10.3168/jds.S0022-0302(00)75114-9.

Busquet M, Calsamiglia S, Ferret A. Plant extracts in vitro rumen microbial fermentation. J Dairy Sci 2000; 89:761-771. http://dx.doi.org/10.3168/jds.S0022-0302(06)72137-3.

Cervantes-Valencia ME, Alcalá-Canto Y,Sumano-Lopez H, Ducoing-Watty AM, Gutierrez-Olvera L. Effects of Curcuma longa dietary inclusion against Eimeria spp. in naturally-infected lambs. Small Rum Res2016; 136: 27-35. https://doi.org/10.1016/j.smallrumres.2015.12.035.

Duan W, Yang Y, Yan J, Yu S, Liu J, Zhou J, Zhang J, Jin Z, YiD. The effects of curcumin post treatment against myocardial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway. Basic Res Cardiol 2012; 1:207-263. https://doi.org/10.1007/s00395-012-0263-7.

El-Bahr SM. Effect of curcumin on hepatic antioxidant enzymes activities and gene expressions in rats intoxicated with aflatoxin B1. Phytoth Res 2015; 140:134-140. http://dx.doi.org/10.1002/ptr.5239.

Fascina VB, Sartori JR, Gonzales E, Carvalho FB, Souza IMGP, Polycarpo GV, Stradiotti AC, Pelícia VC. Phytogenic additives and organic acids in broiler chicken diets. Rev Bras Zootec 2012; 41:2189-2197. http://dx.doi.org/10.1590/S1516-35982012001000008.

Fatorri V, Pinho-Ribeiro FA, Borghi SM, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA. Curcumin inhibits superoxide anion-induced pain-like behavior and leukocyte recruitment by increasing Nrf2 expression and reducing NF-kb activation. Inflamm Res 2015; 64:993-1003. http://dx.doi.org/10.1007/s00011-015-0885-y.

Gunes H, Gulen D, Mutlu R, Gumus A, Tas T, Topkaya AE. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol Indust Health 2013; 32:246-250. http://dx.doi.org/10.1177/0748233713498458.

Jaguezeski AM, Perin G, Bottari NB, Wagner R, Fagundes MB, Schetinger MRC, Da Silva AS. Addition of curcumin to the diet of dairy sheep improves health, performance and milk quality. An Feed SciTechnol 2018; 246:144-157. https://doi.org/10.1016/j.anifeedsci.2018.10.010.

Jentzsch AM, Bachmann H, Furst P, Biesalski HK. Improved analysis of malondialdehyde in human body fluids. Free Rad Biol Med 1996; 20:251-256.

Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974; 249:7130-7139.

Khalafalla RE, Müller U, Shahiduzzaman M, Dyachenko V, Desouky AY, Alber G, Daugschies A. Effects of curcumin (diferuloylmethane) on Eimeria tenella sporozoites in vitro. Parasitol 2011; 108:879–886. http://dx.doi.org/10.1007/s00436-010-2129-y.

Kim DK, Lillehoj HS, Lee SH, Jang SI, Lilleohoj EP, Bravo D. Dietary Curcuma longa enhances resistance against Eimeria maximaand Eimeriatenella infections in chickens. Poult Sci 2013; 2635–2643. http://dx.doi.org/10.3382/ps.2013-03095.

Larson LL, Owen FG, Albright JL, Appleman RD, Lamb RC, Muller LD. Guidelines Toward More Uniformity in Measuring and Reporting Calf Experimental Data. J Dairy Sci 1977;60:1-6. https://doi.org/10.3168/jds.S0022-0302(77)83975-1.

Lopes KS, Yokobatake LA, Andreotti M, Ferreira JP, Costa NR, Lopes KSM, Carvalho SA. Métodos alternativos para determinação da digestibilidade in vitro da matéria seca em silagem de milho consorciado com gramíneas. Rev Tecnol Ciênc Agrop 2014; 8:73-76. http://dx.doi.org/10.4025/actascianimsci.v22i0.3187.

Maia NB, Bovi AO, Duarte FR, Soria LG, Almeida JAR. Influência de tipos de rizomas de multiplicação no crescimento de Curcuma longa L. (Cúrcuma). Bragantia 1995; 54:33-37. http://dx.doi.org/10.1590/S0006-87051995000100004.

Mc Cord JM, Fridovich I. Superoxidedismultase. Anenzymicfunction for erythrocuprein (hemocuprein). J Biol Chem1969; 244:6049-6055.

Molosse V, Souza CF, Baldissera MD, Glombowsky P, Campigotto G, Cazaratto CJ, Stefani LM, Da Silva AS. Diet supplemented with curcumin for nursing lambs improves animal growth, energetic metabolism, and performance of the antioxidant and immune systems. Small Rum Res 2019; 170:74-81. https://doi.org/10.1016/j.smallrumres.2018.11.014.

Monteiro SC, Parasitologia na medicina veterinária. São Paulo: Rocca, 2010; 356p.

Mota RA, Silva KPC, Ribeiro TCF, Ramos GAB, Lima ET, Silva LBG, Zugica CEA. Eficiência do Nuflor no tratamento de diarreias em bezerros e leitões. Hora Vet 2000; 118: 21-24. http://dx.doi.org/10.1590/S0100-736X2007001000006.

Nelson DP, Kiesow LA. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 c (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem1972; 49:474-478. https://doi.org/10.1016/0003-2697(72)90451-4

Obaidat MM, Salman AEB, Roess AA. High prevalence and antimicrobial resistance of mecAStaphylococcus aureus in dairy cattle, sheep, and goat bulk tank milk in Jordan. Trop Anim Health Product 2018; 50:405-412. http://dx.doi.org/10.1007/s11250-017-1449-7.

Peek HW, Halkes SB, Mes JJ, Landman WJ. In vivo screening of four phytochemicals/extracts and a fungal immunomodulatory protein against an Eimeria acervulina infection in broilers. Vet Quart 2013; 33:132–138. http://dx.doi.org/10.1080/01652176.2013.844378.

Pelícia VC, Ducatti C,Araujo PC, Stradiotti AC, Aoyagi MM, Fernandes BS, Silva ET, Sartori JR. Ação trófica de aditivos fitogênicos, glutamina e ácido glutâmico sobre a Bursa de Fabrícius e intestino delgado de frango de corte. Pesq Vet Bras 2015; 5:691-699. http://dx.doi.org/10.1590/S0100-736X2015000700015.

Rahmani M, Golian A, Kermanshahi H, Reza Bassami M. Effects of curcumin or nanocurcumin on blood biochemical parameters, intestinal morphology and microbial population of broiler chickens reared under normal and cold stress conditions. J Appl Anim Res 2017; 9: 1-10. http://dx.doi.org/10.1080/1828051X.2017.1290510.

Rajput N, Ali S, Naeem M, Khan M.A, Wang T. The effects of dietary supplementation with the natural carotenoids curcumin and lutein on pigmentation, oxidative stability and quality of meat from broiler chickens affected by a coccidiosis challenge. Poult Sci 2014; 1-9. http://dx.doi.org/10.1080/00071668.2014.925537

Reis GL, Alburquerque FHMAR, Valente BD, Martins GA, Teodoro RL, Ferreira MBD, Monteiro JBN, Silva MA, Madalena FE. Predição do peso vivo a partir de medidas corporais em animais mestiços Holandês/Gir. Ciênc Rural 2008; 38:778-783. http://dx.doi.org/10.1590/S0103-84782008000300029.

Santos GT, Massuda EM, Kazama DCS, Jobim CC, Branco AF. Bovinocultura Leiteira: Bases zootécnicas, fisiológicas e de produção. Eduem, Maringá 2010.

Silva DJ, Queiroz AC . Análise de alimentos: métodos químicos e biológicos. Editora UFV. Viçosa. 2006; 3.ed. 235p.

Van Soest PJ. Nutritional ecology of the ruminant. 2.ed. New York: Cornel University Press 1994.

Vincent HK, Innes KE, Vincent KR. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diab Obes Metabol 2007; 9:813-39. http://dx.doi.org/10.1111/j.1463-1326.2007.00692.x.

Vorlaphim T, Phonvisay M, Khotsakdee J, Vasupen K, Bureenok S, Wongsuthavas S, Alhaidary A, Mohamed HE, Beynen AC, Yuangklang C. Influence of dietary curcumin on rumen fermentation, macronutrient digestion and nitrogen balance in beef cattle. Am J Agr Biol Sci 2011; 6:7-11. http://dx.doi.org/10.3844/ajabssp.2011.7.11.

Zhang JF, Hu ZP, Lu CH, Yang MX, Zhang LL, Wang T. Dietary curcumina supplementation protects against heat-stress-impaired growth performance of broilers possibly through a mitochondrial pathway. J Anim Sci 2015a; 93:1656-1665. http://dx.doi.org/10.2527/jas.2014-8244.

Zhang JF, Hu ZP, Lu CH, Yang MX, Zhang LL, Wang T. Effect of various levels of dietary curcumin on meat quality and antioxidant profile of breast muscle in broilers. J Agric Food Chem 2015b; 63:3880-3886. http://dx.doi.org/10.1021/jf505889b.

Downloads

Published

2020-01-31

How to Cite

Glombowsky, P., Volpato, A., Campigotto, G., Soldá, N. M., dos Santo, D. da S., Bottari, N. B., Schetinger, M. R. C., Morsch, V. M., Rigon, F., Schogor, A. L. B., & Da Silva, A. S. (2020). Dietary addition of curcumin favors weight gain and has antioxidant, antiinflammatory and anticoccidial action in dairy calves. Revista Colombiana De Ciencias Pecuarias, 33(1), 16–31. https://doi.org/10.17533/udea.rccp.v33n1a02

Issue

Section

Original research articles