Effect of the addition of cellulolytic bacteria to ruminal bacteria on in vitro fermentation characteristics

Authors

  • Nicolás Torres-Salado Universidad Autónoma de Guerrero
  • Marco-Antonio Ayala-Monter Universidad Autónoma de Guerrero
  • Paulino Sánchez-Santillán Universidad Autónoma de Guerrero
  • Isaac Almaraz-Buendía Universidad Autónoma del Estado de Hidalgo

DOI:

https://doi.org/10.17533/udea.rccp.v35n4a5

Keywords:

bacteria, biogas, bovine, buffalo, cellulolitic bacteria, coculture, fiber degradation, fiber, fermentation characteristics, gas production, in vitro fermentation, methane, rumen, ruminal bacteria

Abstract

Background: Digestibility of fiber in the rumen is not due to enzymatic activity of individual bacteria, but rather to their interaction, which complements their enzymatic functioning. Thus, efficiency of fiber digestion depends on the diversity and density of cellulolytic bacteria. Objective: To estimate in vitro production of biogas, methane, and fermentative characteristics of cobra grass (Brachiaria hibrido) inoculated with ruminal bacteria (RB) in coculture with isolated cellulolytic bacteria (ICB) from bovine (ICBbov) or water buffalo (ICBbuf). Methods: ICBbov and ICBbuf were isolated from ruminal cellulolytic bacteria consortia using specific culture media for cellulolytic bacteria. Both were morphologically characterized and a Gram stain was performed. In the in vitro gas production test, the substrate was cobra grass and the inocula were ruminal bacteria (RB), ICBbov, ICBbuf, Coculturebov (RB + ICBbov) and Coculturebuf (RB + ICBbuf). Biogas and methane (CH4) production, as well as dry matter degradation (DMD) and neutral detergent fiber degradation (NDFD) were measured. A completely randomized design was used. Results: The ICB obtained were Gram positive cocci. Accumulated biogas production at 72 h from ICBbov and ICBbuf was on average 42.11% of that produced by RB. The Coculturebov produced 14.24% more biogas than RB. The CH4 production was lower in ICBbov and ICBbuf than in RB, Coculturebov and Coculturebuf. The DMD and NDFD were not different among RB, Coculturebov and Coculturebuf. The ICBbov degraded 37.10 and 96.34% more DMD and NDFD than ICBbuf (p<0.05). Conclusion: The use of ICB from bovine or water buffalo in coculture with RB does not improve in vitro production of biogas, DMD or NDFD with respect to RB alone.

|Abstract
= 442 veces | PDF
= 400 veces| | HTML
= 2 veces| | VISOR
= 3 veces|

Downloads

Download data is not yet available.

Author Biographies

Nicolás Torres-Salado, Universidad Autónoma de Guerrero

Facultad de Medicina Veterinaria y Zootecnia No. 2, Universidad Autónoma de Guerrero, México
https://orcid.org/0000-0002-3439-1228

Marco-Antonio Ayala-Monter, Universidad Autónoma de Guerrero

Facultad de Medicina Veterinaria y Zootecnia No. 2, Universidad Autónoma de Guerrero, México
https://orcid.org/0000-0001-9072-1407

Paulino Sánchez-Santillán, Universidad Autónoma de Guerrero

Facultad de Medicina Veterinaria y Zootecnia No. 2, Universidad Autónoma de Guerrero, México
https://orcid.org/0000-0001-8639-1476

Isaac Almaraz-Buendía, Universidad Autónoma del Estado de Hidalgo

Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, México
https://orcid.org/0000-0001-9404-1548

References

Abad-Guamán R, Carro MD, Carabaño R, García J. Estudio de la cinética de producción de la pulpa de remolacha con inóculos ileales y cecales de conejos: comparación de modelos. In: Asociación Interprofesional para el Desarrollo Agrario (ed). XVI Jornadas sobre producción animal. Tomo I. Zaragoza, España: 2015. P.275-277.

Azizi A, Sharifi A, Fazaeli H, Azarfar A, Jonker A, Kiani A. Effect of transferring lignocellulose-degrading bacteria from termite to rumen fluid of sheep on in vitro gas production, fermentation parameters, microbial populations and enzyme activity. J Integr Agric 2020; 19(5): 1323-1331. DOI: https://doi.org/10.1016/S2095-3119(19)62854-6

Bader J, Mast-Gerlach E, Popović MK, Bajpai R, Stahl U. Relevance of microbial coculture fermentations in biotechnology. J Appl Microbiol 2010; 109(2): 371-389. DOI: https://doi.org/10.1111/j.1365-2672.2009.04659.x

Ezaki T. Ruminococcus. In: Wiley JS (ed). Bergey's Manual of Systematics of Archaea and Bacteria. 1ra ed. Georgia: Wiley Online Library; 2015. DOI: https://doi.org/10.1002/9781118960608.gbm00678

Barahona RR, Sánchez PS. Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. R. Corpoica 2005; 6(1): 69-82.

Berny YA, Paramita LW, Najwan R, Huda K, Cipka PWA, Fariz NRN. Characterization of cellulolytic bacteria as candidate probiotic for animal. Indian Vet J 2019; 96(08): 29-31.

Cai S, Li J, Ze FH, Zhang K, Luo Y, Janto B, Boissy R, Ehrilich G, Dong X. Cellulosilyticum ruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrateborne fibrolytic enzymes. Appl Environ Microbiol 2010; 76(12): 3818-3824. DOI: https://doi.org/10.1128/AEM.03124-09

Cobos MA, Pérez-Sato M, Piloni-Martini J, González SS, Bárcena JR. Evaluation of diets containing shrimp Shell waste and an inoculum of Streptococcus milleri on rumen bacteria and performance of lambs. Anim Feed Sci Technol 2007; 132: 324-330. DOI: https://doi.org/10.1016/j.anifeedsci.2006.03.019

Davey ME, O´Toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 2000; 64(4): 847-867. DOI: https://doi.org/10.1128/AEM.00375-1110.1128/mmbr.64.4.847-867.2000

Dehority BA, el-Shazly K, Johnson RR. Studies with the Cellulolytic Fraction of Rumen Bacteria Obtained by Differential Centrifugation. J Anim Sci 1960; 19(4): 1098-1109. DOI: https://doi.org/10.2527/jas1960.1941098x

Deng Y, Huang Z, Zhao M, Ruan W, Miao H, Ren H. Effects of co-inoculating rice straw with ruminal microbiota and anaerobic sludge: digestion performance and spatial distribution of microbial communities. Appl Microbiol Biotechnol 2017; 101: 5937-5948. DOI: https://doi.org/10.1007/s00253-017-8332-3

Du C, Nan X, Wang K, Zhao Y, Xiong B. Evaluation of the digestibility of steam-exploded wheat straw by ruminal fermentation, sugar yield and microbial structure in vitro. RCS Adv 2019; 9: 41775-41782. DOI: https://doi.org/10.1039/c9ra08167d

Gang G, Chen S, Qiang L, Shuan-lin Z, Tao S, Cong W, Yong-xin W, Qing-fang X, Wen-jie H. The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. J Integr Agric 2020; 19(3): 838-847. DOI: https://doi.org/10.1016/S2095-3119(19)62707-3

Getachew GP, Robinson H, DePeters EJ, Taylor SJ. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim Feed Sci Technol 2004; 111: 57-71. DOI: https://doi.org/10.1016/S0377-8401(03)00217-7

González GUA, González MR, Estrada JGF, Bastida JLG, Pecador NS, Salem AZM. Inclusión de heno de chícharo (Pisum sativum L.) y producción de gas in vitro en dietas para corderos en crecimiento. Trop Subtrop Agroecosys 2011; 14: 989-997

Gudeta GD, Krishna MSR. Isolation and characterization of potential cellulose degrading bacteria from sheep rumen. J Pure Appl Microbiol 2019; 13(3): 1831-1839. DOI: https://doi.org/10.22207/JPAM.13.3.60

Harrigan WF, McCance EM. Laboratory methods in microbiology of foods and milk products. Leon (Spain) Ed. Academia; 1979.

Harsini SM, Mohammadabadi T, Motamedi H, Sari M, Teimouri YA. Isolation and identification of cellulolytic bacteria from gastrointestinal tract of Arabian horse and investigation of their effect on the nutritional value of wheat straw. J Appl Microbiol 2019; 127: 344-353. DOI: https://doi.org/10.1111/jam.14251

Hernández-Morales J, Sánchez-Santillán P, Torres-Salado N, Herrera-Pérez J, Rojas-García A R, Reyes-Vázquez I, Mendoza-Núñez M A. Composición química y degradaciones in vitro de vainas y hojas de leguminosas arbóreas del trópico seco de México. Rev Mex Cienc Pec 2018. 9(01): 105-120. DOI: http://dx.doi.org/10.22319/rmcp.v9i1.4332

Herrera-Pérez J, Vélez-Regino LG, Sánchez-Santillán P, Torres-Salado N, Rojas-García AR, Maldonado-Peralta MA. In vitro fermentation of fibrous substrates by wáter buffalo ruminal cellulolytic bacteria consortia. MVZ Cordoba 2018; 23(3): 6860-6870. DOI: http://dx.doi.org/10.21897/rmvz.1374

Hungate RE. The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 1950; 14: 1-49.

Hungate RE. The rumen and its microbes. New York (NY): Academic Press Inc; 1966.

Hyung KD, ja LS, Som OD, Dong LI, Sik EJ, Young PH, Ho CS, Sill LS. In vitro evaluation of Rhus succedanea extracts for ruminants. Asian-Australas J Anim Sci 2018; 31(10): 1635-1642. DOI: https://doi.org/10.5713/ajas.18.0045

Liu J, Liu Z, Liu Y, Hao M, Hou X. Analysis of cellulolytic bacterial flora in the rumen of inner Mongolian sheep. BioRes 2019; 14(4): 9544-9556. DOI: https://doi.org/10.15376/biores.14.4.9544-9556

McCullough, H. The determination of ammonia in whole blood by a direct colorimetric method. Clin Chim Acta 1967; 17: 297-304.

Menke KH, Steingas H. Estimation of the energetic feed value obtained from Chemical analysis and in vitro gas production using rumen fluid. Anim Res Develop 1988; 28(1):7-55.

Nagaraja TG. Microbiology of the rumen. In: Domingues MD, de Beni AM, Dias LP editors. Rumenology. Switzerland: Springer; 2016. P. 39-62.

Qian W, Ao W, Jia C, Li Z. Bacterial colonisation of reeds and cottonseed hulls in the rumen of Tarim red deer (Cervus elaphus yarkandensis). Antonie Van Leeuwenhoek 2019; 112: 1283-1296. DOI: https://doi.org/10.1007/s10482-019-01260-0

Ramírez GRM. Técnicas básicas de microbiología y su fundamento. Ciudad México (México): Trillas; 2015.

Rodríguez MC, Aguirre E, Salvador F, Ruiz O, Arzola C, La OO, Villalobos C. Producción de gas, ácidos grasos volátiles y nitrógeno amoniacal in vitro con dietas basadas en pasto seco. Rev Col Cienc Pec 2010; 44: 251-259.

Sánchez-Santillán P, Meneses-Mayo M, Miranda-Romero LA, Santellano-Estrada E, Alarcón-Zúñiga B. Fribrinolytic activity and gas production by Pleurotus ostreatus-IE8 and Fomes fomentarius-EUM1 in bagasse cane. MVZ Córdoba 2015; 20(supl): 4907-4916. DOI: https://doi.org/10.21897/rmvz.6

Sánchez-Santillán P, Cobos-Peralta MA, Hernández-Sánchez D, Álvarado-Iglesias A, Espinosa-Victoria D, Herrera-Haro J G. Use of activated carbon to preserve lyophilized cellulolytic bacteria. Agrociencia 2016; 50(05): 575-582.

Sánchez-Santillán P, Cobos-Peralta MA. In vitro production of volatile fatty acids by reactivated cellulolytic bacteria and total ruminal bacteria in cellulosic substrate. Agrociencia 2016; 50(05): 565-574.

SAS. Statistical Analysis System. User’s guide., Ed. Cary (NC): USA. SAS Institute Inc. 2011

Sattar AH, Hassan SA, Abid-Alelah AA. Isolation and identification of cellulase producing bacteriaisolated from the rumen fluid ofiraqi camels. Plant Arch 2018; 18(2): 1695-1899.

Texta NJ, Sánchez-Santillán P, Hernández SD, Torres-Salado N, Crosby GM, Rojas-García AR, Herrera PJ, Maldonado PM. Use of disaccharides and activated carbon to preserve cellulolytic ruminal bacterial consortiums lyophilized. MVZ Cordoba 2019; 24(3): 7305-7313. DOI: https://doi.org/10.21897/rmvz.1412

Torres-Salado N, Sánchez-Santillán P, Rojas-García AR, Almaraz-Buendía I, Herrera-Pérez J, Reyes-Vázquez I, Mayren-Mendoza FJ. In vitro gas production and fermentative characteristics of ruminal cellulolytic bacterial consortia of water buffalo (Bubalus bubalis) and Suiz-bu cow. Agrociencia 2019; 53(02): 145-159.

Trejo-López MT, Soto-Simental S, Franco-Fernández MJ, Hernández-Uribe JP, Vargas-Romero JM, Ayala-Martínez M. Efecto de enzimas fibrolíticas exógenas sobre los componentes de leche. Bol. ICAP 2018; 4(8). DOI: https://doi.org/10.29057/icap.v4i8.3343

Vanegas JL, González J, Carro MD. Influence of protein fermentation and carbohydrate source on in vitro methane production. J Anim Physiol Anim Nutr 2017; 101: e288-e296. DOI: https://doi.org/10.1111/jpn.12604

Xie X, Yang C, Guan LL, Wang J, Xue M, Liu JX. Persistence of cellulolytic bacteria fibrobacter and treponema after short-term corn stover-based dietary intervention reveals the potential to improve rumen fibrolytic function. Front Microbiol 2018; 9: 1363 DOI: https://doi.org/10.3389/fmicb.2018.01363

Zuroff TR, Xiques SB, Curtis WR. Consortiamediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol Biofuels 2013; 6(1): 59. DOI: https://doi.org/10.1186/1754-6834-6-59

Published

2022-04-18 — Updated on 2024-09-20

Versions

How to Cite

Torres-Salado, N., Ayala-Monter, M.-A., Sánchez-Santillán, P., & Almaraz-Buendía, I. (2024). Effect of the addition of cellulolytic bacteria to ruminal bacteria on in vitro fermentation characteristics. Revista Colombiana De Ciencias Pecuarias, 36(1), 22–32. https://doi.org/10.17533/udea.rccp.v35n4a5 (Original work published April 18, 2022)

Issue

Section

Original research articles