La suplementación con L-carnitina disminuye la acumulación de triglicéridos hepáticos en vacas Holstein durante el periodo de transición

Autores/as

  • Rubén D. Galvis Universidad Nacional de Colombia
  • Liset V. Madrid Universidad Nacional de Colombia
  • Nicolás Ramírez-Vásquez Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.rccp.v32n3a01

Palabras clave:

factores lipotrópicos, lipidosis, L-carnitina, metabolismo lipídico, periparto, trastornos metabólicos, vacas lecheras

Resumen

Antecedentes: El incremento en la utilización de reservas corporales durante el periparto en vacas exige una alta disponibilidad de L-carnitina, la cual puede ser limitante bajo las condiciones propias de producción del trópico alto colombiano. Objetivo: Evaluar el potencial lipotrópico de la L-carnitina en vacas lecheras Holstein durante el periodo de transición a la lactancia. Métodos: Se suministraron dosis de 0, 100 y 200 g/d de fumarato de L-carnitina a 21 vacas Holstein a partir del d 260 de gestación y hasta el d 20 postparto. Se determinaron las concentraciones hepáticas de triacilglicéridos, carnitina total, carnitina libre y acil carnitina, y las concentraciones plasmáticas de ácidos grasos no esterificados (NEFA), β-hidroxibutirato (β-HB) y urea. Un análisis de medidas repetidas fue usado para determinar los efectos de la dosis, el periodo de medición, y sus interacciones. Resultados: Las concentraciones hepáticas de triglicéridos y de las diferentes formas de carnitina no difirieron significativamente (p>0,05) entre periodos de muestreo. La concentración hepática de triglicéridos fue baja, y mostró una disminución significativa (p<0,05) en respuesta a la suplementación con 200 g/d de fumarato de L-carnitina. La disminución en los triglicéridos hepáticos podría deberse a un aumento en la oxidación de ácidos grasos. La suplementación con L-carnitina aumentó significativamente (p<0,05) la concentración de urea en sangre, posiblemente a través de un mecanismo de estimulación del ciclo de la urea, descrito previamente en otras especies. Conclusión: La suplementación con L-carnitina disminuyó la concentración hepatica de trigliceridos, debido posiblemente a un aumento en la oxidación de ácidos grasos en hígado.

|Resumen
= 599 veces | PDF (ENGLISH)
= 336 veces| | HTML (ENGLISH)
= 0 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Rubén D. Galvis, Universidad Nacional de Colombia

Grupo de Investigación sobre Interacciones Nutricionales, Metabólicas y Reproductivas en Bovinos, Departamento de Producción Animal, Universidad Nacional de Colombia, Sede Medellín.

Liset V. Madrid, Universidad Nacional de Colombia

Grupo de Investigación sobre Interacciones Nutricionales, Metabólicas y Reproductivas en Bovinos, Departamento de Producción Animal, Universidad Nacional de Colombia, Sede Medellín.

Nicolás Ramírez-Vásquez, Universidad de Antioquia

Línea de Investigación en Medicina Bovina, Grupo de Investigación Centauro, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia.

Citas

AOAC. Association of Official Analytical Chemists International (AOAC). Official methods of analysis of AOAC International. 18th edition. Maryland, USA, 2005.

Bell AW, Burhans WS, Overton TR. Protein nutrition in late pregnancy, maternal protein reserves and lactation performance in dairy cows. Proc Nutr Soc 2000; 59:119-126.

Bremer J, Christiansen RZ, Boreebaek, B. Regulation of partition of free fatty acids between triglyceride synthesis and β-oxidation in liver. In: Esmann V, editor. Regulatory Mechanisms of Carbohydrate Metabolism. Proceedings of the 11th meeting of the Federation of European Biochemical Societies; 1977; Copenhagen, Denmark. Pergamon press; 1978. p.161-170.

Carlson DB, Litherland NB, Dann HM, Woodworth JC, Drackley JK. Metabolic effects of L-carnitine infusion and feed restriction in lactating Holstein cows. J Dairy Sci 2006; 89:4819-4834.

Carlson DB, McFadden JW, D’Angelo A, Woodworth C, Drackley JK. Dietary L-carnitine affects periparturient nutrient metabolism and lactation in multiparous cows. J Dairy Sci 2007a; 90:3422-3441.

Carlson DB, Woodworth JC, Drackley JK. Effect of L-carnitine infusion and feed restriction on carnitine status in lactating Holstein cows. J Dairy Sci 2007b; 90:2367-2376.

Chapa AM, Fernandez JM, White TW, Bunting LD, Gentry LR, Ward TL, Blum SA. Infuence of intravenous L-carnitine administration in sheep preceding an oral urea load drench. J Anim Sci 1998; 76:2930-2937.

Chapa AM, Fernandez JM, White TW, Bunting LD, Gentry LR, Lovejoy JC, Owen KQ. Influence of dietary carnitine in growing sheep fed diets containing non-protein nitrogen. Small Rumin Res 2001; 40:13-28.

Christiansen RZ, Bremer J. Active transport of butyrobetaine and carnitine into isolated liver cells. Biochim Biophys Acta 1976; 448:562-577.

Dann HM, Varga GA, Putnam DE. Improving energy supply to late gestation and early postpartum dairy cows. J Dairy Sci 1999; 82:1765-1778.

Drackley JK, Beitz DC, Young JW. Regulation of in vitro palmitate oxidation in liver from dairy cows during early lactation.J Dairy Sci 1991a; 74:1884-1892.

Drackley JK, Beitz DC, Young JW. Regulation of in vitro metabolism of palmitate by carnitine and propionate in liver from dairy cows. J Dairy Sci 1991b; 74:3014-3024.

Erfle JD, Sauer FD, Fisher LJ. Effect of Infusion of carnitine and glucose on blood glucose, ketones, and free fatty acids of ketotic cows. J Dairy Sci 1971; 54:673-680.

Espinal LS. Zonas de vida o formaciones vegetales de Colombia: Mapas. Instituto Geográfico Agustin Codazzi 1977. 20 mapas.

Galvis GR. Efecto de la complementación con metionina-colina y L-carnitina en vacas Holstein durante el periodo de transición sobre la acumulación hepática de triglicéridos. Tesis Doctorado en Ciencias Agrarias. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Medellín, 2016. p. 106.

Galvis GR, Ramirez NF, Giraldo A. Extracción, cuantificación y distribución de las principales fracciones lipídicas en pequeñas biopsias de hígado de vacas en el periodo de transición. Rev CES Med Vet y Zootec 2016; 11(1):26-38.

Galvis RD, Valencia D, Correa HJ, Ramírez NF, Torres J. Efecto de niveles crecientes de nitrógeno no protéico dietario sobre la concentración de precursores gluconeogénicos en hígado bovino. Rev Fac Nac Agron 2010; 63(1): 5363-5372.

Gross J, Schwarz F, Eder K, Van Dorland A, Bruckmaier RM. Liver fat content and lipid metabolism in dairy cows during early lactation and during a mid-lactation feed restriction. J Dairy Sci 2013; 96:5008-5017.

Hammon HM, Philipona C, Zbinden Y, Blum JW, Donkin SS. Effects of dexamethasone and growth hormone treatment on hepatic gluconeogenic enzymes in calves. J Dairy Sci 2005;88:2107-2116.

Icontec. Norma técnica colombiana NTC 4657. Alimento para animales. Determinación del contenido de nitrógeno y cálculo del contenido de proteína cruda. Método Kjeldahl. Instituto Colombiano de Normas Técnicas y Certificación, 1999.

Icontec. Norma técnica colombiana NTC 668. Alimentos y materias primas. Determinación de los contenidos de grasa y fibra cruda. Instituto Colombiano de Normas Técnicas y Certificación, 2002.

Kalaitzakis E, Roubies N, Panousis N, Pourliotis K, KaldrymidouE, Karatzias H. Clinicopathologic evaluation of hepatic lipidosisin periparturient dairy cattle. J Vet Intern Med 2007; 21:835-845.

Lacount DW, Drackley JK, Weigel DJ. Responses of dairy cows during early lactation to ruminal or abomasal administration of L-carnitine. J Dairy Sci 1995; 78:1824-1836.

Lacount DW, Emmert LS, Drackley JK. Dose Response of dairy cows to abomasal administration of four amounts of L-carnitine. J Dairy Sci 1996a; 79:591-602.

Lacount DW, Ruppertt DL, Drackley JK. Ruminal degradation and dose response of dairy cows to dietary L-carnitine. J Dairy Sci 1996b; 79:260-269.

Littell RC, Henry PR, Ammerman CB. Statistical analysis of repeteadmeasures using SAS procedures. J Animal Sci 1998; 76:1216-1231.

Madrid LV, Correa HJ, Galvis RD. Efecto de la inclusión de fumarato de L-carnitina sobre el consumo de materia seca, en vacas Holstein durante el periodo de transición a la lactancia. Rev CES Med Vet y Zootec 2015; 10(2):193-202.

Madsen A. Metabolism in liver cells. In: Riis PM, editor: Dynamic Biochemistry of Animal Production. Amsterdam: Elsevier Science Publishers B.V; 1983. p. 53-74.

Malaguarnera M. Acetyl-L-carnitine in hepatic encephalopathy. Metab Brain Dis 2013; 28:193-199.

NRC. Nutrient Requirements of Dairy Cattle: 7th Revised Edition. Subcommittee on Dairy Cattle Nutrition, Committee on Animal Nutrition, National Research Council. National Academy Press, 2001. p. 381.

O’Connor JE, Costell M, Grisolía S. The potentiation of ammonia toxicity by sodium benzoate is prevented by L-carnitine. Biochem Biophy Res Com 1987b; 145(2):817-824.

O’Connor JE, Costell M, Míguez MO, Portolés M, Grisolía S. Effect of l-carnitine on ketone bodies, redox state and free amino acids in the liver of hyperammonemic mice. Biochem Pharm 1987a; 36(19): 3169-3173.

Prieto JA, Andrade F, Aldámiz-Echevarría L, Sanjurjo P. Determination of free and total carnitine in plasma by an enzymatic reaction and spectrophotometric quantitation spectrophotometric determination of carnitine. Clin Biochem 2006; 39:1022-1027.

Putnam DE, Varga GA. Protein density and its influence on metabolite concentration and nitrogen retention by Holstein cows in late gestation. J Dairy Sci 1998; 81:1608-1618.

Ramsay RR, Gandour RD, Van der Leij FR. Molecular enzymology of carnitine transfer and transport. Biochim Biophys Acta 2001; 1546:21-43.

Ratnakumar LI, Qureshi IA, Butterworth RF. Effect of L-carnitineon cerebral and hepatic energy metabolites in congenitally hyperammonemic sparse-fur mice and its role during benzoate therapy. Metabolism 1993; 42(8):1039-1046.

SAS®, Statistical Analysis Systems. SAS/STAT User’s Guide. Version 8. Cary, NC (USA): SAS Institute Inc., 1999.

Starke A, Haudum A, Busche R, Beyerbach M, Dänicke S. Technical note: Analysis of total lipid and triacylglycerol content in small liver biopsy samples in cattle. J Anim Sci 2010; 88: 2741-2750.

Takeuchi T,Sugimoto T, Nishida N, Kobayashi Y. Protective effect of D-L-carnitine on valproate-induced hyperammonemia and hypoketonemia in primary cultured rat hepatocytes. Biochem Pharm 1988; 37(11):2255-2258.

Tomomura M, Tomornura A, Dewan MD, Abdullah AM, Saheki T. Long-chain fatty acids suppress the induction of urea cycle enzyme genes by glucocorticoid action. FEBS Letters 1996;399:310-312.

Waver D, St. Jean G, Steiner A. Bovine Surgery and lameness. 2nd edition. Oxford: David Weaver, Adrian Steiner and Guy St Jean, editors; 2005. p. 132-133.

Weber C, Hametner A, Tuchscherer B, Losand E, Kanitz W, Otten SP, Singh RM, Bruckmaier F, Becker F, Kanitz W, Hammon HM. Variation in fat mobilization during early lactation differently affects feed intake, body condition, and lipid and glucose metabolism in high-yielding dairy cows. J Dairy Sci 2013;96:165-180.

White TW, Fernandez JM, Gentry GT, Gentry RL, DeRouen PT, Froetschel MA. Influence of urea alone or combined with fish solubles, fish meal, or feather meal in liquid supplement with and without L-carnitine on performance, ruminal, and metabolic parameters of weanling calves. Prof Anim Sci 2001;17:145-153.

Publicado

2019-07-16

Cómo citar

Galvis, R. D., Madrid, L. V., & Ramírez-Vásquez, N. (2019). La suplementación con L-carnitina disminuye la acumulación de triglicéridos hepáticos en vacas Holstein durante el periodo de transición. Revista Colombiana De Ciencias Pecuarias, 32(3), 166–174. https://doi.org/10.17533/udea.rccp.v32n3a01

Número

Sección

Artículos Originales de investigación

Artículos más leídos del mismo autor/a