Relación microbioma, salud y producción en las ciencias pecuarias

Autores/as

  • Andrés Gómez Universidad de Minnesota

DOI:

https://doi.org/10.17533/udea.rccp.340329

Resumen

El Microbioma (o la microbiota,) la colección de microorganismos que colonizan y habitan las cavidades, superfcies y epitelios de la anatomía mamífera, juega roles fundamentales en el estado fsiológico animal. Este sistema microbiano, compuesto por trillones de células y sus genes, codifca funciones imprescindibles, que extienden las capacidades fsiológicas de los animales, y que garantizan la efciencia de procesos nutricionales, inmunes y de bienestar. Aunque la importancia del microbioma en la salud y la producción animal ha sido históricamente reconocida en el contexto de las ciencias pecuarias, nuevas técnicas en biología molecular, secuenciación masiva, ciencias meta-OMICAS, bioinformática, minería de datos y aprendizaje automático para estudiar microbiomas (técnicas microbiOMICAS), han revelado que la complejidad estructural y funcional de estas comunidades microbianas es mucho mayor de lo que nos imaginábamos, y que el microbioma impacta múltiples procesos fsiológicos animales de diversas maneras, y de forma simultánea. Adicionalmente, la aplicación de estas técnicas microbiOMICAS en diferentes sistemas de producción, ha dado cuenta del potencial de intervenciones nutricionales y de manejo que puedan modular el microbioma animal para mejorar la efciencia de estos sistemas. Estrategias para modular el microbioma animal cobran una importancia crítica, en vista de los retos en sostenibilidad, seguridad alimentaria, equilibrio ambiental y producción limpia, que como investigadores en ciencias pecuarias, afrontamos hoy en día. Esta conferencia tiene como objetivo principal presentar una perspectiva actual sobre la influencia del microbioma en los sistemas de producción animal. Se hará énfasis en los mecanismos moleculares que sostienen el eje animal-microbio-dieta, y en la relación indisoluble entre nutrición, inmunidad (salud) y producción. Igualmente, con base en evidencia recopilada hasta la fecha, se analizan diferentes escenarios de manipulación nutricional y/o ambiental para modular el microbioma, donde ha sido posible influenciar fenotipos productivos y de salud, en favor de sistemas más efcientes.

|Resumen
= 409 veces | PDF
= 467 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Andrés Gómez, Universidad de Minnesota

Departamento de Ciencias Animales; Departamento de ciencias de la nutrición y los alimentos, Universidad de Minnesota, Minnesota, USA.

Citas

Alipour, Mohammad Jaber, Jonna Jalanka, Tiina PessaMorikawa, Tuomo Kokkonen, Reetta Satokari, Ulla Hynönen, Antti Iivanainen, and Mikael Niku. 2018. “The Composition of the Perinatal Intestinal Microbiota in Cattle.” Scientifc Reports 8 (1): 10437.

Allen, Heather K., Uri Y. Levine, Torey Looft, Meggan Bandrick, and Thomas A. Casey. 2013. “Treatment, Promotion, Commotion: Antibiotic Alternatives in Food-Producing Animals.” Trends in Microbiology 21 (3): 114–19.

Bergman, E. N. 1990. “Energy Contributions of Volatile Fatty Acids from the Gastrointestinal Tract in Various Species.” Physiological Reviews 70 (2): 567–90.

Byrne, C. S., E. S. Chambers, D. J. Morrison, and G. Frost. 2015. “The Role of Short Chain Fatty Acids in Appetite Regulation and Energy Homeostasis.” International Journal of Obesity 39 (9): 1331–38.

Cani, Patrice D., Audrey M. Neyrinck, Nicole Maton, and Nathalie M. Delzenne. 2005. “Oligofructose Promotes Satiety in Rats Fed a High-Fat Diet: Involvement of Glucagon-like Peptide-1.” Obesity Research 13 (6): 1000–1007.

Castro, J. J., A. Gomez, B. A. White, H. J. Mangian, J. R. Loften, and J. K. Drackley. 2016. “Changes in the Intestinal Bacterial Community, Short-Chain Fatty Acid Profle, and Intestinal Development of Preweaned Holstein Calves. 1. Effects of Prebiotic Supplementation Depend on Site and Age.” Journal of Dairy Science 99 (12): 9682–9702.

Curtis, G., C. McGregor Argo, D. Jones, and D. Grove-White. 2018. “The Impact of Early Life Nutrition and Housing on Growth and Reproduction in Dairy Cattle.” PloS One 13 (2): e0191687.

De Rodas, Brenda, Bonnie P. Youmans, Jessica L. Danzeisen, Huyen Tran, and Timothy J. Johnson. 2018. “Microbiome Profling of Commercial Pigs from Farrow to Finish.” Journal of Animal Science 96 (5): 1778–94.

Di Giancamillo, Alessia, Raffaella Rossi, Piera Anna Martino, Lucia Aidos, Federica Maghin, Cinzia Domeneghini, and Carlo Corino. 2018. “Copper Sulphate Forms in Piglet Diets: Microbiota, Intestinal Morphology and Enteric Nervous System Glial Cells.” Animal Science Journal = Nihon Chikusan Gakkaiho 89 (3): 616–24.

Forsberg, Cecil W., K-J Cheng, and Bryan A. White. 1997. “Polysaccharide Degradation in the Rumen and Large Intestine.” In Gastrointestinal Microbiology: Volume 1 Gastrointestinal Ecosystems and Fermentations, edited by Roderick I. Mackie and Bryan A. White, 319–79. Boston, MA: Springer US.

Forsberg, Cecil W., K-J Cheng, and Bryan A. White. 1997. “Polysaccharide Degradation in the Rumen and Large Intestine.” In Gastrointestinal Microbiology: Volume 1 Gastrointestinal Ecosystems and Fermentations, edited by Roderick I. Mackie and Bryan A. White, 319–79. Boston, MA: Springer US.

Kaewtapee, Chanwit, Katharina Burbach, Georgina Tomforde, Thomas Hartinger, Amélia Camarinha-Silva, Sonja Heinritz, Jana Seifert, Markus Wiltafsky, Rainer Mosenthin, and Pia Rosenfelder-Kuon. 2017. “Effect of Bacillus Subtilis and Bacillus Licheniformis Supplementation in Diets with Lowand High-Protein Content on Ileal Crude Protein and Amino Acid Digestibility and Intestinal Microbiota Composition of Growing Pigs.” Journal of Animal Science and Biotechnology 8 (May): 37.

Kraler, Manuel, Mahdi Ghanbari, Konrad J. Domig, Karl Schedle, and Wolfgang Kneifel. 2016. “The Intestinal Microbiota of Piglets Fed with Wheat Bran Variants as Characterised by 16S rRNA next-Generation Amplicon Sequencing.” Archives of Animal Nutrition 70 (3): 173–89.

Kubasova, Tereza, Lenka Davidova-Gerzova, Elodie Merlot, Matej Medvecky, Ondrej Polansky, Delphine Gardan-Salmon, Helene Quesnel, and Ivan Rychlik. 2017. “Housing Systems Influence Gut Microbiota Composition of Sows but Not of Their Piglets.” PloS One 12 (1): e0170051.

Malmuthuge, Nilusha, Philip J. Griebel, and Le Luo Guan. 2015. “The Gut Microbiome and Its Potential Role in the Development and Function of Newborn Calf Gastrointestinal Tract.” Frontiers in Veterinary Science 2 (September): 36.

Mathew, Alan G., Robin Cissell, and S. Liamthong. 2007. “Antibiotic Resistance in Bacteria Associated with Food Animals: A United States Perspective of Livestock Production.” Foodborne Pathogens and Disease 4 (2): 115–33.

Mazmanian, Sarkis K., June L. Round, and Dennis L. Kasper. 2008. “A Microbial Symbiosis Factor Prevents Intestinal Inflammatory Disease.” Nature 453 (7195): 620–25.

Meale, S. J., S. C. Li, P. Azevedo, H. Derakhshani, T. J. DeVries, J. C. Plaizier, M. A. Steele, and E. Khafpour. 2017. “Weaning Age Influences the Severity of Gastrointestinal Microbiome Shifts in Dairy Calves.” Scientifc Reports 7 (1): 198.

Moen, Birgitte, Ingunn Berget, Ida Rud, Anastasia S. Hole, Nils Petter Kjos, and Stefan Sahlstrøm. 2016. “Extrusion of Barley and Oat Influence the Fecal Microbiota and SCFA Profle of Growing Pigs.” Food & Function 7 (2): 1024–32.

Pedroso, Adriana A., Anne L. Hurley-Bacon, Andrea S. Zedek, Tiffany W. Kwan, Andrea P. O. Jordan, Gloria Avellaneda, Charles L. Hofacre, et al. 2013. “Can Probiotics Improve the Environmental Microbiome and Resistome of Commercial Poultry Production?” International Journal of Environmental Research and Public Health 10 (10): 4534–59.

Quan, Jianping, Gengyuan Cai, Jian Ye, Ming Yang, Rongrong Ding, Xingwang Wang, Enqin Zheng, et al. 2018. “A Global Comparison of the Microbiome Compositions of Three Gut Locations in Commercial Pigs with Extreme Feed Conversion Ratios.” Scientifc Reports 8 (1): 4536.

Quan, Jianping, Gengyuan Cai, Jian Ye, Ming Yang, Rongrong Ding, Xingwang Wang, Enqin Zheng, et al. 2018. “A Global Comparison of the Microbiome Compositions of Three Gut Locations in Commercial Pigs with Extreme Feed Conversion Ratios.” Scientifc Reports 8 (1): 4536.

Shabat, Sheerli Kruger Ben, Goor Sasson, Adi DoronFaigenboim, Thomer Durman, Shamay Yaacoby, Margret E. Berg Miller, Bryan A. White, Naama Shterzer, and Itzhak Mizrahi. 2016. “Specifc Microbiome-Dependent Mechanisms Underlie the Energy Harvest Efciency of Ruminants.” The ISME Journal 10 (12): 2958–72.

Tapio, Ilma, Timothy J. Snelling, Francesco Strozzi, and R. John Wallace. 2017. “The Ruminal Microbiome Associated with Methane Emissions from Ruminant Livestock.” Journal of Animal Science and Biotechnology 8 (January): 7.

Threlfall, E. J., L. R. Ward, J. A. Frost, and G. A. Willshaw. 2000. “The Emergence and Spread of Antibiotic Resistance in Food-Borne Bacteria.” International Journal of Food Microbiology 62 (1-2): 1–5.

Vo, Nguyen, Tsung Cheng Tsai, Charles Maxwell, and Franck Carbonero. 2017. “Early Exposure to Agricultural Soil Accelerates the Maturation of the Early-Life Pig Gut Microbiota.” Anaerobe 45 (June): 31–39.

Descargas

Publicado

2019-10-30

Cómo citar

Gómez, A. (2019). Relación microbioma, salud y producción en las ciencias pecuarias. Revista Colombiana De Ciencias Pecuarias, 32, 34–38. https://doi.org/10.17533/udea.rccp.340329

Número

Sección

Conferencias magistrales