Un estudio morfológico de Haemosporida aviar en aves silvestres colombianas
Haemosporida aviar en Colombia
DOI:
https://doi.org/10.17533/udea.rccp.v38n3a8Palabras clave:
ave silvestre, frotis sanguíneo, Haemoproteus, Haemosporida, Leucocytozoon, Plasmodium, protozoo, malaria aviarResumen
Introducción: La infección por hemoparásitos protozoarios causantes de malaria en aves es crónica y puede generar alteraciones físicas, reproductivas y de comportamiento, ocasionando la disminución de las poblacionales de las aves silvestres afectadas. Objetivo: Identificar la presencia de agentes parasitarios causantes de malaria aviar en una población de aves silvestres en el municipio de Jardín (Antioquia, Colombia), a partir de frotis de sangre, así como explorar los factores a nivel de ave asociados con la positividad. Métodos: Se realizó un estudio descriptivo de corte transversal, con muestreo no probabilístico y a conveniencia. Las muestras de sangre se obtuvieron de aves silvestres capturas con redes de niebla. Cada ave fue caracterizada de acuerdo con su género, especie, sexo y grupo etario. Se prepararon y examinaron tres frotis de sangre por ave, buscando la presencia de estructuras parasitarias de los géneros Haemoproteus, Leucocytozoon y Plasmodium. Se calcularon las estadísticas descriptivas, así como la asociación entre las variables de estudio y el resultado dicotómico del análisis en frotis de sangre (positivo o negativo), mediante prueba exacta de Fisher. Resultados: Un total de 46 aves silvestres de 20 especies diferentes del orden Paseriforme y cuasi-Paseriforme fueron capturadas en seis ubicaciones diferentes del municipio de estudio (entre 1.665 y 2.053 m.s.n.m) en julio de 2022. Se encontraron estructuras compatibles con Haemosporida causantes de malaria aviar, siendo la frecuencia de infección general de 34,8% (16/46). El 32,6% (15/46) de las aves fueron positivas a Plasmodium spp., el 6,5% (3/46) a Haemoproteus spp. y el 4,3% (2/46) a Leucocytozoon spp. Adicionalmente, se evidenció que un 6.5% (3/46) de las aves presentaron multinfección por 2 o 3 de los agentes de interés. Se encontró una asociación entre la infección por Plasmodium spp. y el grupo de edad cuando el ave se definía como adulta (p=0.050). Conclusión: Este estudio contribuye al conocimiento de los hemoparásitos en aves silvestres en Colombia, reportando la presencia de malaria aviar en el área de estudio. Se requiere investigación adicional sobre la identificación molecular de hemoparásitos protozoarios, la patogenicidad, el estado de salud de estas aves y el impacto atribuible en sus poblaciones.
Descargas
Citas
Astudillo VG, Hernández SM, Kistler WM, Boone SL, Lipp EK, Shrestha S, Yabsley MJ. Spatial, temporal, molecular, and intraspecific differences of haemoparasite infection and relevant selected physiological parameters of wild birds in Georgia, USA. Int J Parasitol
Parasites Wildl 2013; 2:178–189. https://doi.org/10.1016/j.ijppaw.2013.04.005
Bragal-Martins E, Silveira P, Oliveira-Belo N, Valkiūnas G. Recent advances in the study of avian malaria: an overview with an emphasis on the distribution of Plasmodium sp in Brazil. Mem Inst Oswaldo Cruz 2011; 106(Suppl 1):3–11. https://doi.org/10.1590/s0074-02762011000900002
Chan JFW, To KKW, Tse H, Jin DY, Yuen KY. Interspecies transmission and emergence of novel viruses: Lessons from bats and birds. Trends Microbiol 2013; 21(10):544–555. https://doi.org/10.1016/j.tim.2013.05.005
Cheng TL, Reichard JD, Coleman JTH, Weller TJ, Thogmartin WE, Reichert BE, Bennett AB, Broders HG, Campbell J, Etchison K, Feller DJ, Geboy R, Hemberger T, Herzog C, Hicks AC, Houghton S, Humber J, Kath JA, King RA, Frick WF. The scope and severity of white‐nose syndrome on hibernating bats in North America. Conserv Biol 2021; 35(5):1586–1597. https://doi.org/10.1111/cobi.13739
Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. Defaunation in the Anthropocene. Science 2014; 345(6195):401–406. https://www.science.org/doi/10.1126/science.1251817
Emmenegger T, Riello S, Schmid R, Serra L, Spina F, Hahn S. Avian haemosporidians infecting short- and long-distance migratory Old World flycatcher species and the variation in parasitaemia after endurance flights. Acta Parasitol 2023; 68(4):746–753. https://doi.org/10.1007/s11686-023-00710-0
Gil-Vargas DL, Sedano-Cruz RE. Genetic variation of avian malaria in the tropical Andes: A relationship with the spatial distribution of hosts. Malar J 2019; 18(129). https://doi.org/10.1186/s12936-019-2699-9
González AD, Matta NE, Ellis VA, Miller ET, Ricklefs RE, Gutiérrez HR. Mixed species flock, nest height, and elevation partially explain avian haemoparasite prevalence in Colombia. PLoS ONE 2014; 9(6). https://doi.org/10.1371/journal.pone.0100695
González AD, Lotta IA, García LF, Moncada LI, Matta NE. Avian haemosporidians from neotropical highlands: Evidence from morphological and molecular data. Parasitol Int 2015; 64(4):48–59. https://doi.org/10.1016/j.parint.2015.01.007
González-Olvera M, Hernández-Colina A, Santiago-Alarcon D, Osorio-Beristain M, Martínez-Maya JJ. Blood-parasites (Haemosporida) of wild birds captured at different land uses within a tropical seasonal dry forest matrix. Acta Zool Mex 2022; 38(1):1–22. https://doi.org/10.21829/azm.2022.3812425
Harl J, Fauchois A, Puech MP, Gey D, Ariey F, Izac B, Weissenböck H, Chakarov N, Iezhova TA, Valkiūnas G, Duval L. Novel phylogenetic clade of avian Haemoproteus parasites (Haemosporida, Haemoproteidae) from Accipitridae raptors, with description of a new Haemoproteus species. Parasite 2024; 31:5. https://doi.org/10.1051/parasite/2023066
Hilty LS, Brown LW. Birds of Colombia. Colombia: Lynx Edicions; 2021.
IUCN. The IUCN red list of threatened species. Version 2023-1. IUCN Red List of Threatened Species; 2023. https://www.iucnredlist.org/
Levin II, Parker PG. Haemosporidian parasites: Impacts on avian hosts. In: Miller RE, Murray F editors. Fowler’s Zoo and Wild Animal Medicine. Vol 7 2012; pp. 356–363. https://doi.org/10.1016/b978-1-4377-1986-4.00047-0
López‐Serna S, González‐Quevedo C, Rivera‐Gutiérrez HF. Beyond illness: Variation in haemosporidian load explains differences in vocal performance in a songbird. Ecol Evol 2021; 11(24):18552–18561. https://doi.org/10.1002/ece3.8455
Lotta IA, Pacheco MA, Escalante AA, González AD, Mantilla JS, Moncada LI, Adler PH, Matta NE. Leucocytozoon diversity and possible vectors in the neotropical highlands of Colombia. Protist 2016; 167(2):185–204. https://doi.org/10.1016/j.protis.2016.02.002
Lotta IA, Valkiūnas G, Pacheco MA, Escalante AA, Hernández SR, Matta NE. Disentangling Leucocytozoon parasite diversity in the neotropics: Descriptions of two new species and shortcomings of molecular diagnostics for leucocytozoids. Int J Parasitol Parasites Wildl 2019; 9:159–173. https://doi.org/10.1016/j.ijppaw.2019.05.002
Mantilla JS, González AD, Lotta IA, Moens M, Pacheco MA, Escalante AA, Valkiūnas G, Moncada LI. Haemoproteus erythrogravidus n. sp. (Haemosporida, Haemoproteidae): Description and molecular characterization of a widespread blood parasite of birds in South America. Acta Trop 2016; 159:83–94. https://doi.org/10.1016/j.actatropica.2016.02.025
Matta Camacho NE, Gonzalez Galindo AD, Pinto Osorio DF, Ojeda Ochoa KA. Colección Biológica Grupo de Estudio Relación Parásito Hospedero (UNAL:GERPH). v2.6. Universidad Nacional de Colombia 2024. https://doi.org/10.15472/bmzrb5
Meister SL, Wyss F, Wenker C, Hoby S, Basso WU. Avian haemosporidian parasites in captive and free-ranging, wild birds from zoological institutions in Switzerland: Molecular characterization and clinical importance. Int J Parasitol Parasites Wildl 2022; 20:46–55. https://doi.org/10.1016/j.ijppaw.2022.12.005
Merino S, Moreno J, Vásquez-Salfate R, Martínez J, Sánchez-Monsalvez I, Estades-Marfán C, Ippi S, Sabat-Kirkwood AP, Rozzi R, Mcgehee S. Haematozoa in forest birds from southern Chile: Latitudinal gradients in prevalence and parasite lineage richness Austral Ecol 2008; 33(3):329–340. https://doi.org/10.1111/j.1442-9993.2008.01820.x
Minichová L, Slobodník V, Slobodník R, Olekšák M, Hamšíková Z, Skultety L, Špitalská E. Detection of avian haemosporidian parasites in wild birds in Slovakia. Diversity 2024; 16:121. https://doi.org/10.3390/d16020121
Moore CS, Baillie CJ, Edmonds EA, Gittman RK, Blakeslee AMH. Parasites indicate trophic complexity and faunal succession in restored oyster reefs over a 22-year period. Ecol Appl 2023; 33(4):e2825. https://doi.org/10.1002/eap.2825
Muriel J. Evaluación ecofisiológica de las infecciones por hemosporidios sanguíneos en aves. Ecosistemas 2020; 29(2):1979. https://doi.org/10.7818/ECOS.1979
Naqvi MAulH, Khan MK, Iqbal Z, Rizwan HM, Khan MN, Naqvi SZ, Zafar A, Sindhu ZudD, Abbas RZ, Abbas A. Prevalence and associated risk factors of haemoparasites, and their effects on hematological profile in domesticated chickens in District Layyah, Punjab, Pakistan. Prev Vet Med 2017; 143:49–53. https://doi.org/10.1016/j.prevetmed.2017.05.001
Pérez-Rodríguez A, de la Hera I, Fernández-González S, Pérez-Tris J. Global warming will reshuffle the areas of high prevalence and richness of three genera of avian blood parasites. Glob Chang Biol 2014; 20(8):2406–2416. https://doi.org/10.1111/gcb.12542
Ralph CJ, Geupel GR, Pyle P, Martin TE, DeSante DF, Milá B. Manual de métodos de campo para el monitoreo de aves terrestres. Gen. Tech. Rep. PSW-GTR-159. Albany, CA: US Department of Agriculture, Forest Service, Pacific Southwest Research Station; 1996. https://doi.org/10.2737/PSW-GTR-159
Remsen J, Areta J, Cadena CD, Claramunt S, Jaramillo A, Pacheco JF, Robbins MB, Stiles FG, Stotz DF, Zimmer KJ. A classification of the bird species of South America. American Ornithologists’. American Ornithological Society 2022. https://www.museum.lsu.edu/~Remsen/SACCBaseline.htm
Santiago-Alarcón D, Palinauskas V, Schaefer HM. Diptera vectors of avian Haemosporidian parasites: Untangling parasite life cycles and their taxonomy. Biol Rev Camb Philos Soc 2012; 87(4):928–964. https://doi.org/10.1111/j.1469-185X.2012.00234.x
Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, Acevedo AA, Burrowes PA, Carvalho T, Catenazzi A, de la Riva I, Fisher MC, Flechas SV, Foster CN, Frías-Álvarez P, Garner TWJ, Gratwicke B, Guayasamin JM, Hirschfeld M, Canessa S. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 2019; 363(6434):1459–1463. https://doi.org/10.1126/science.aav0379
Smith KF, Sax DF, Lafferty KD. Evidence for the role of infectious disease in species extinction and endangerment. Conserv Biol 2006; 20(5):1349–1357. https://doi.org/10.1111/j.1523-1739.2006.00524.x
Stager M, Eddy DK, Cheviron ZA, Carling MD. Haemosporidian infection does not alter aerobic performance in the Pink-sided Junco (Junco hyemalis mearnsi). bioRxiv 2021. https://doi.org/10.1101/2021.09.20.460914
Tamayo-Quintero J, Martínez-de la Puente J, San-José M, Gonzáles-Quevedo C, Rivera-Gutiérrez HF. Bird community effects on avian malaria infections. Sci Rep 2023; 13:(11681). https://doi.org/10.1038/s41598-023-38660-2
Valkiūnas G, Iezhova TA. Keys to the avian malaria parasites. Malar J 2018; 17(1):212. https://doi.org/10.1186/s12936-018-2359-5
Valkiūnas G, Ilgunas M, Bukauskaite D, Fragner K, Weissenböck H, Atkinson CT, Iezhova TA. Characterization of Plasmodium relictum, a cosmopolitan agent of avian malaria. Malar J 2018; 17(184). https://doi.org/10.1186/s12936-018-2325-2
Ventim R, Morais J, Pardal S, Mendes L, Ramos JA, Pérez-Tris J. Host-parasite associations and host-specificity in haemoparasites of reed bed passerines. Parasitology 2012; 139(3):310–316. https://doi.org/10.1017/S0031182011002083
Villalva-Pasillas D, Medina JP, Soriano-Vargas E, Martínez-Hernández DA, García-Conejo M, Galindo-Sánchez KP, Sánchez-Jasso JM, Talavera-Rojas M, Salgado-Miranda C. Haemoparasites in endemic and non-endemic passerine birds from central Mexico highlands. Int J Parasitol Parasites Wildl 2020; 11:88–92. https://doi.org/10.1016/j.ijppaw.2019.12.007
Villareal H, Álvarez M, Córdoba S, Escobar F, Fagua G, Gast F, Mendoza H, Ospina M, Umaña AM. Manual de métodos para el desarrollo de inventarios de biodiversidad. Programa de inventarios de biodiversidad. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; 2004. http://hdl.handle.net/20.500.11761/31419
Woodroffe R, Sillero-Zubiri C. Lycaon pictus (amended version of 2012 assessment). The IUCN Red List of Threatened Species; 2020. https://www.iucnredlist.org/species/12436/166502262
Young HS, Parker IM, Gilbert GS, Guerra AS, Nunn CL. Introduced species, disease ecology, and biodiversity–disease relationships. Trends Ecol Evol 2017; 32(1):41–54. https://doi.org/10.1016/j.tree.2016.09.008
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Revista Colombiana de Ciencias Pecuarias
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores permiten a RCCP reimprimir el material publicado en él.
La revista permite que los autores tengan los derechos de autor sin restricciones, y permitirá que los autores conserven los derechos de publicación sin restricciones.