Efectos del cloruro de mercurio (HgCl2) sobre la sobrevivencia y crecimiento de renacuajos de Dendrosophus bogerti

Autores/as

  • Eliana M. Muñoz-Escobar Universidad de Antioquia
  • Jaime A. Palacio-Baena Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.acbi.13814

Palabras clave:

cloruro de mercurio, crecimiento, Dendrosophus bogerti, metamorfosis, renacuajos

Resumen

Larvas de la rana (Dendrosophus bogerti) fueron expuestas a cinco concentraciones letales (0,25, 0,3, 0,36, 0,43 y 0,51 mg/l) y cuatro subletales (0,02, 0,04, 0,08 y 0,10 mg/l) de cloruro de mercurio (HgCL2), con el fin de determinar la CL50, los efectos sobre el crecimiento y sobre la tasa de desarrollo. La CL50 96 h del HgCL2 fue 0,41 mg/l. Se evidenció un efecto del Hg sobre el crecimiento (peso y longitud) a los 10 y 20 días de exposición a 0,04, 0,08 y 0,1 mg/l HgCL2 con un P < 0,001. En contraste, el peso y la longitud de los renacuajos expuestos a 0,02 mg/l HgCL2 no mostraron diferencias significativas con el control negativo (P = 0,77 y P = 0,1, respectivamente). La mayor inhibición del crecimiento se observó a los 30 días (P < 0,001). En el tiempo para alcanzar el estadio 36 de Gosner se encontraron diferencias significativas en todos los ejemplares tratados con Hg con respecto al control (H = 35,4, P < 0,001). El retraso en el desarrollo puede estar relacionado con la alteración enzimática y en la naturaleza presenta consecuencias negativas en la sobrevivencia de los renacuajos debido a la rápida desecación de las charcas temporales y vulnerabilidad a depredadores. La especie D. bogerti es sensible a la exposición del mercurio en ambientes acuáticos, con efectos desfavorables sobre el crecimiento y la tasa de desarrollo.

|Resumen
= 1478 veces | PDF
= 367 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Eliana M. Muñoz-Escobar, Universidad de Antioquia

Grupo de Investigación en Gestión y Modelación Ambiental (GAIA). Sede de Investigación Universitaria (SIU)

Jaime A. Palacio-Baena, Universidad de Antioquia

Docente. Departamento de Ingeniería Sanitaria

Citas

Albrecht J, Abalos M, Rice TM. 2007. Heavy metal levels in ribbon snakes (Thamnophis sauritus) and anuran larvae from the Mobil-Tensaw river Delta, Alabama, U. S. A. Archives of Environmental Contamination and Toxicology, 53 (4): 647-654.

Babbitt KJ, Tanner GW. 1997 Effects of cover and predator identity on predation of Hyla squirella tadpoles. Journal of Herpetology, 31 (1): 128-130.

Balls M, Clothier RH, Rowles JM, Kiteliey NA, Bennett GW. 1985. TRH distribution, levels and significance during the development of Xenopus laevis. En: Balls M, Bounes M, editores. Metamorphosis 8th Symposium British Society Developmental Biology. Oxford: Clarendon Press. p. 260-271.

Berven KA. 1990. Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology, 71 (4): 1599-1608.

Bhattacharya T, Bhattacharya S, Ray AK, Dey S. 1989. Influence of industrial pollutants on thyroid function in Channa punctatus (Bloch). Indian Journal of Experimental Biology, 27 (1): 65-68.

Birge WJ, Black JA. 1980. Aquatic toxicology of nickel. En: Nriagu Jo editor. Nickel in the Environment. New York: J. Wiley and Sons. p. 349-366.

Brand AB, Snodgrass JW, Gallagher MT, Casey RE, Meter RV. 2010. Lethal and sublethal effects of embryonic and larval exposure of Hyla versicolor to stormwater pond sediments. Archives of Environmental Contamination and Toxicology, 58 (2): 325-331.

Bridges CC, Zalups Rk. 2005. Molecular and ionic mimicry and the transport of toxic metals. Toxicology and Applied Pharmacology, 204 (3): 274-308.

Britson CA, Threlkeld ST. 1998. Abundance, metamorphosis, developmental and behavioral abnormalities in Hyla chrysoscelis tadpoles following exposure to three agrichemicals and methyl mercury in outdoor mesocosms. Bulletin of Environmental Contamination and Toxicology, 61 (2): 154-161.

Bulog B, Mihajl K, Zvonka J, Mihael JT. 2002. Trace element concentrations in the tissues of proteus anguinus (Amphibia, Caudata) and the surrounding environment. Water, Air, and Soil Pollution, 136 (1-4): 147-163.

Burger J, Snodgrass, J. 2001. Metal levels in southern leopard frogs from the Savannah river site: location and body compartment effects. Environmental Research (Section A), 86 (2): 157-166.

Bush SL, Dyson ML, Halliday TR. 1996. Selective phonotaxis by males in the Majorcan Midwife toad. Proceedings of Biological Sciences, 263 (1372): 913-917.

Christin MS, Me ́nard L, Gendron AD, Ruby S, Cyr D, Marcogliese DJ, Rollins-Smith L, Fournier M. 2004. Effects of agricultural pesticides on the immune system of Xenopus laevis and Rana pipiens. Aquatic

Toxicology, 67 (1): 33-43.

Collins JP, Storfer A. 2003. Global amphibian declines: Sorting the hypotheses. Diversity and Distribution, 9: 89-98.

Collins JP. 1979. Intrapopulation variation in the body size at metamorphosis and timing of metamorphosis in the bullfrog, Rana catesbeiana. Ecology, 60 (4): 738-749.

Cummins CP. 1986. Temporal and spatial variation in egg size and fecundity in Rana temporaria. Journal of Animal Ecology, 55 (1): 303-316.

Denver RJ. 1997. Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis. American Zoologist, 37 (2): 172-184.

Esclapés M. 1999. Protocolos estándares para bioensayos de toxicidad con especies acuáticas y terrestres. Versión 2.0. Caracas (Venezuela): PDVSA. INTEVEP. p. 215.

Facemire CF, Gross TS, Guillette LJ. Jr. 1995. Reproductive impairment in the Florida panther: nature or nuture? Environmental Health Perspectives, 103 (4): 79-86.

Fort DJ, Rogers RL, Morgan LA, Miller MF, Clark PA, White JA, Paul RR, Stover EL. 2000. Preliminary validation of a short term morphological assay to evaluate adverse effects on amphibian metamorphosis and thyroid function using Xenopus laevis. Journal of

Applied Toxicology, 20 (5): 419-425.

Fort DJ, Rogers RL, Thomas JH, Hopkins WA, Schleka C. 2006. Comparative developmental toxicity of nickel to Gastrophryne carolinensis, Bufo terrestris, and Xenopus laevis. Archives of Environmental Contamination and Toxicology, 51: 703-710.

Gallo-D SM, Palacio J, Gutiérrez-C PD. 2006. Efectos del insecticida clorpirifos sobre la tasa de crecimiento y la metamorfosis de Smilisca phaeota (Cope, 1862) (Anura: Hylidae). Actualidades Biológicas, 28 (84): 51-58.

Gosner K.L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16 (3): 183-190.

Guisande C, Barreiro A, Maneiro I, Riveiro I, Vergara R, Vaamonde A. 2006. Tratamiento de datos. Madrid (España): Editorial Díaz de Santos. p. 355.

Hayes N, Haston K, Tsui M, Hoang A, Haeffele C, Vonk A. 2002. Herbicides: Feminization of male frogs in the wild. Nature, 419: 895-896.

Kalish LA. 1990. Efficient desing for stimation of median lethal dose and quantal dose-response curves. Biometric, 46 (3): 737-748.

Kaplan RH, Salthe SN. 1979. The allometry of reproduction: an empirical view in salamanders. American Naturalist, 113 (5): 671-689.

Klump GM, Gerhardt HC. 1987. Use of non arbitrary acoustic criteria in mate choice by female Gray Tree frogs. Nature, 326: 286-288.

Lefcort H, Meguire RA, Wilson LH, Ettinger WF. 1998. Heavy metals alter the survival, growth, metamorphosis and antipredatory behavior of Columbia spotted frog (Rana luteiventris) tadpoles. Archives of Environmental Contamination and Toxicology, 35 (3): 447-456.

Loumbourdis N, Danscher G. 2008. Autometallographic tracing of Hg-S quantum dots in foros exponed to inorganic mercury. Biometals, 21: 311-319.

Malm O, Pfeiffer W, Souza C, Reuther R. 1990. Mercury pollution due to gold mining in the Madeira River. Journal of the Human Environment, 19: 1-8.

Marrugo-Negrete JL, Lans E. 2006. Impacto ambiental por contaminación con níquel, mercurio y cadmio en aguas, peces y sedimentos en la cuenca del río San Jorge, en el departamento de Córdoba. Montería (Córdoba): Centro de Investigaciones (CIUC), Universidad de Córdoba. Marrugo-Negrete J, Benítez LN, Olivero-Verbel J. 2008.

Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in Northern Colombia. Archives of Environmental Contamination and Toxicology, 55 (2): 305-316.

Mcgeer JC, Szebedinsky C, McDonald DG, Wood CMd. 1999. Effects of chronic sublethal exposure to waterbone Cu, Cd, or Zn, in rainbow trout. 1: Iono- regulatory disturbance and metabolic costs. Aquatic

Toxicology, 50 (3): 231-243.

McGregor AJ, Mason HJ. 1991. Occupational mercury vapour exposure and testicular, pituitary, and thyroid endocrine function. Human and Experimental Toxicology, 10 (3): 199-203.

Nishisaka N. 1994. Sensitivity of of inmature regenerating proximal tubular cell in Rabbit kidney to mercuric-chloride a light and electron microscopic analysis. Nippon Jinzo Gakkasi Shi, 36 (4): 298-306.

Palacio J, Muñoz E, Gallo S, Rivera M. 2006. Anfibios y reptiles del Valle de Aburrá. Medellín (Colombia): Editorial Zuluaga p. 174.

Palacio J, Aguirre N, Barrera J. 2002. Efectos tóxicos de la exposición aguda de Prochilodus magdalenae a cloruro de mercurio. Actualidades Biológicas, 24 (77): 123-128.

Peterson JD, Peterson VA, Mendonca MT. 2008. Growth and Developmental Effects of Coal Combustion Residues on Southern Leopard Frog (Rana sphenocephala) Tadpoles Exposed throughout Metamorphosis. Copeia, 2008 (3): 499-503.

Ray J, Madhyastha MN. 1987. Toxicities of some heavy metals to the tadpoles of frog, Microhyla ornata (Dumeril y Bibron). Toxicology Letters, 36 (2): 205-208.

Reish D, Oshida P. 1987. Manual of methods in aquatic environment research. Part 10 - Short-term static bioassays. Roma (Italia): FAO. p. 62.

Rouhani Rankouhi T, Sanderson JT, Van Holsteijn I, Van Kooten P, Bosveld ATC, Van den Berg M. 2005. Effects of environmental and natural estrogens on vitellogenin production in hepatocytes of the brown frog (Rana temporaria). Aquatic Toxicology, 71 (1): 97-101.

Rowe CL, Kinney OM, Nagle RD, Congdon JD. 1998.Elevated maintenance cost in anuran (Rana catesbeiana) exposed to a mixture of trace elements during the embryonic and early larval periods. Physiological and Biochemical Zoolology, 71 (1): 27-35.

Rowe CL, Kinney OM, Fiori AP, Congdon JD. 1996. Oral deformities in tadpoles (Rana catesbeiana) associated with coal ash deposition: effects on grazing ability and growth. Freshwater Biology, 36 (3): 723-730.

Semlitsch RD, Gibbons JW. 1988. Fish predation in size-structured populations of treefrog tadpoles. Oecologia, 81 (3): 100-103.

Semlitsch RD. 1987. Relationship of pond drying to the reproductive success of the salamander Ambystoma talpoideum. Copeia, 61 (1): 61-69.

Sin YM, Teh CI. 1992. Effect of long-term uptake of mercuric sulphide on thyroid hormones and glutathione in mice. Bulletin of Environmental Contamination and Toxicology, 49 (3): 847-854.

Smith D. 1987 Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecology, 68 (2): 344-350.

Snodgrass JW, Jagoe CH, Bryan AL, Brant HA, Burger J. 2000. Effects of trophic status and wetland morphology, hydroperiod and water chemistry on mercury concentration in fish. Canadian Journal of Fisheries and Aquatic Sciences, 57 (1): 171-180.

Sparling DW, Krest S, Ortiz-Santaliestra, M. 2006. Effects of Lead-Contaminated Sediment on Rana sphenocephala tadpoles. Archives of Environmental Contamination and Toxicology, 51 (3): 458-466.

Sullivan BK. 1992. Sexual selection and calling behavior in the American toad (Bufo americanus). Copeia, 1992 (1): 1-7.

TFG (Taylor y Francis Group). 2006. Lethal and sublethal effects of mercury under controlled conditions. CRCnetBASE. Fecha de acceso: 07 de enero de 2010. Disponible en: <http://www.environetbase.com/books/4576/9212ch8.pdf>.

Unrine JM, Hopkins WA, Romanek CS, Jackson, BP. 2007. Bioaccumulation of trace elements in omnivorous amphibian larvae: Implications for amphibian health and contaminant transport. Environmental Pollution, 149 (2): 182-192.

Unrine JM, Jagoe C, Hopkins WA, Brant HA. 2004. Aderse effects of ecologically relevant dietary mercury exposure in southern leopard frog (Rana sphenocephala) larvae. Environmental Toxicology and

Chemistry, 23 (12): 2964-2970.

Unrine JM, Jagoe C. 2004. Dietary mercury exposure and bioaccumulation in southern leopard frog (Rana sphenocephala) larvae. Environmental Toxicology and Chemistry, 23 (12): 2956-2963.

Unrine JM, Jagoe C. Brinton HA, Brant NT. 2005. Dietary mercury exposure and bioaccumulation in amphibian larvae inhabiting Carolina bay Wetlands. Environmental Pollution, 135 (2): 245-253.

Valle BL, Ulmer DD. 1972. Biochemical effects of mercury, cadmium and lead. Annual Review of Biochemistry, 41: 91-128.

Werner EE. 1991. Nonlethal effects of a predator on competitive interactions between two anuran larvae. Ecology, 72 (5): 1709-1720.

Wilbur HM, Collins JP. 1973. Ecological aspects of amphibian metamorphosis: nonnormal distributions of competitive ability reflect selection for facultative metamorphosis. Sciences, 182 (4119): 1305-1314.

Descargas

Publicado

2012-12-03

Cómo citar

Muñoz-Escobar, E. M., & Palacio-Baena, J. A. (2012). Efectos del cloruro de mercurio (HgCl<sub>2</sub>) sobre la sobrevivencia y crecimiento de renacuajos de <i>Dendrosophus bogerti</i>. Actualidades Biológicas, 32(93), 189–197. https://doi.org/10.17533/udea.acbi.13814

Número

Sección

Artículos completos

Artículos más leídos del mismo autor/a