Sensitive mathematical objects and intelligible mathematical objects


  • Víctor Hugo Chica Pérez Universidad de Antioquia
  • Luis F. Echeverri Universidad de Antioquia
  • Edwin Zarrazola Universidad de Antioquia



Mathematical objects, Greek antiquity, arithmetic, logistics


In this paper we study the concept of mathematical object as it was understood by ancient mathematical thought, particularly by Plato and Aristotle. We are going to prove that it is not right to interpret the duality of this concept in Plato’s works as consequence of an ontological division between two kinds of mathematical objects, i.e. the sensitive and the intelligible ones. We want to prove that such a division is not a real one because, as a matter of fact, Plato is proposing a differentiation between two possible ways to be related with mathematical objects: the way of the philosophers and the way of the non–philosophers. Moreover, we show that our interpretation is able to clarify the ambiguity around the concept of μоνάς and therefore eliminate the false distinction between the two subject matters devoted to the study of discrete mathematical objects: the λоγιστική and the ἀριθμητική.

= 336 veces | PDF (ESPAÑOL (ESPAÑA))
= 272 veces|


Download data is not yet available.

Author Biographies

Víctor Hugo Chica Pérez, Universidad de Antioquia

Instituto de Filosofía
Universidad de Antioquia
Medellín Colombia

Luis F. Echeverri, Universidad de Antioquia

Instituto de Matemáticas
Universidad de Antioquia
Medellín, Colombia

Edwin Zarrazola, Universidad de Antioquia

Instituto de Matemáticas
Universidad de Antioquia
Medellín, Colombia


Anglin and Lambek (1995). The Heritage of Thales. New York: SpringerVerlag.

Aristóteles (1970). Metafísica. Traducción: Valentín García Yebra, Edición trilingüe, Madrid: Gredos.

Aristóteles (1995). Física. Traducción: Guillermo R. de Echandía, Madrid: Gredos.

Aristóteles (1989). Posterior Analitics. Cambridge: Harvard University Press Classical Loeb.

Aristóteles (1993). Ética Nicomaquea, traducción: Julio Palí Bonet, Madrid, Gredos.

Cherniss. H. (1951). Plato as Mathematician. En: Review of Methaphisics, (4): 395–425.

Euclides. (1969). The Thirteen Books of the Elements. Translation into English by Thomas L. Heath, (3 volumes), New York: Dover.

Euclides. (1991). Elementos, Traducción: María Luisa Puertas, Madrid, Gredos.

Enderton. H. B. (1977). Elements of Set Theory. New York: Academic Press.

Gadamer, H. G. (1995). El inicio de la filosofía occidental. España: Paidós.

Gosling, J. C. B. (1993). Platón. México: Universidad Nacional Autónoma De México

Guthrie, W. (1977). A History of Greek Philosophy. (Vol. 5). Inglaterra: University of Cambridge.

Halmos. P. R. (1973). Teoría Intuitiva de Conjuntos. Trad, Antonio Martín Lunas. México: CECSA.

Heath. T. L. (1965). A History of Greek Mathematics. London: Oxford University Press.

Heath. T. L. (1963). A Manual of Greek Mathematics. New York: Dover.

Klein. J. (1968). Greek Mathematical Thought and the Origin of Algebra. Translated from the German by Eva Brann. Cambridge: MIT.

McCabe, M. M. (1999). Plato’s Individuals. Princeton: Princeton University Press.

Meldelson. E. (1987). Introduction to Mathematical Logic. Monterrey (California): Wadsworth and Brooks.

Mosterín. J. (1980). Teoría Axiomática de Conjuntos. Madrid: Ariel.

Platón. (1992). Diálogos. Volúmenes I–VI, Madrid: Gredos.

Platón. (1994). Republic, Parmenides, Meno, Phaedo, Philebus. Cambridge: Harvard University Press.

Pritchard, P. (1995). Plato’s Philosophy of Mathematics. Sankt Agustin: Academia Verlag

Proclo. (1970). A Commentary on the First Book of Euclid’s Elements. Princeton: University Press.

Ross, D. (1986). La teoría de las ideas de Platón. España: Catedra.

Sayre, K. M. (1983). Plato’s late ontology –A riddle resolved–. New Jersey: Princeton University Press.

Wedberg. A. (1955). Plato’s Philosophy of Mathematics. Stockholm: Almquist and Wiksell.

White, N. P. (1999). Plato’s metaphysical epistemology. En: KRAUT, R. (ed.). The Cambridge Companion to Plato. Cambridge: Cambridge university press.



How to Cite

Chica Pérez, V. H., Echeverri, L. F., & Zarrazola, E. (2017). Sensitive mathematical objects and intelligible mathematical objects. Estudios De Filosofía, (55), 187–205.



Original or Research articles