What does ‘microbiology for sustainable development’ mean?
DOI:
https://doi.org/10.17533/udea.hm.337548Keywords:
microbiology, sustainability, researchAbstract
The quest for sustainable development as a purpose of microbiology has at least two implications: i) research in microbiology has the ultimate aim of leading societies to reach the convergence of economic prosperity, social wellbeing and environmental protection and, ii) microorganisms should be used to improve the social-ecological adaptability of human activities. The current state of research in microbiology related to sustainable development shows that studies have focused on challenges in the field of agriculture, livestock, and energy production, and in fields where microorganisms have diverse uses such as ecosystems monitoring, pollutant biodegradation and waste utilization (by-product generation). However, despite all these uses being essential for microbiology to contribute to sustainable development, it is necessary to resolve other problems not easily detectable in studies related to microbiology development. There are, at least, three challenges: firstly, the exploration of micro-biodiversity in order to provide more alternatives of transformation for industrial activities; secondly, the sustainability analysis of those human activities that have already included microbial technologies to make them more sustainable; and thirdly, the need to train microbiologists on sustainable development.
Downloads
References
Salas-Zapata WA, Ríos-Osorio LA, Cardona-Arias JA. Methodological characteristics of sustainability science: a systematic review. Environment Development and Sustainability. 2017;19(4):1127-1140. https://doi.org/10.1007/s10668-016-9801-z
Salas-Zapata, WA, Ortiz-Muñoz, SM. Analysis of meanings of the concept of sustainability. Sustainable Development. 2018;27(1)153-161. https://doi.org/10.1002/sd.1885
World Commission on Environment and Development. Our common future. Report of the World Commission on Environment and Development. United Nations Doc A/42/427. New York: United Nations;1987. 374 p.
Hansson S. Technology and the notion of sustainability. Technology in Society. 2010; 32:274–279.
Bodin P, Wiman B. Resilience and other stability concepts in ecology: notes on their origin, validity and usefulness. ESS Bull. 2004;2:33-43
.6. Folke C. Resilience: The emergence of a perspective for social-ecological systems. Global Environmental Change. 2006;16(3):253–267.
Holling C. Understanding the complexity of economic, ecological, and social systems. Ecosystems. 2001;4:390–405
Berkes F, Colding J, Folke C. Introduction. In: Berkes (Ed.), Navigating socialecological systems: Building resilience for complexity and change. Cambridge (UK): Cambridge University Press, 2003
Ortiz-Muñoz S, Mejía-Escobar JA, Ríos-Osorio LA, Salas-Zapata WA. Análisis de los micro-contextos de la investigación en microbiología desde la perspectiva de la sostenibilidad. Panace@: Revista de Medicina, Lenguaje y Traducción. 2017;45(9):19-29.
Salas-Zapata W, Zuluaga-González D, Alzate-Caicedo E. Procesos microbianos y actividades humanas relacionados con problemas de insostenibilidad: Revisión sistemática 2005-2012. Hechos microbiológicos. 2019 (Hechos Microbiol. 2016;7(1-2):39-51.
Zuluaga-Mazo C, Arango-Bermudez D, Salas-Zapata, W. Profile of the use of microorganisms within environmental management: Systematic review 2012-2017. Informe de investigación.
Aylagas E, Borja A, Tangherlini M, Dell’Anno A, Corinaldesi C, Michell CT, Irigoien X, Danovaro R, Rodríguez-Ezpeleta N. A bacterial community-based index to assess the ecological status of estuarine and coastal environments. Marine pollution bulletin. 2017;114(2):679-688 https://doi.org/10.1016/j.marpolbul.2016.10.050
Fisher D, Yonkos L, Ziegler G, Friedel E, Burton D. Acute and chronic toxicity of selected disinfection byproducts to Daphnia magna, Cyprinodon variegatus, and Isochrysis galbana. Water Research. 2014;55:233-244 https://doi.org/10.1016/j.watres.2014.01.056
Técher D, Laval-Gilly P, Bennasroune A, Henry S, Martinez-Chois C, D’Innocenzo M, et al. An appraisal of Miscanthus x giganteus cultivation for fly ash revegetation and soil restoration Industrial Crops and Products. 2012; 6(1):427-433. https://doi.org/10.1016/j.indcrop.2011.10.009
Batlle-Aguilar J, Brovelli A, Barry DA, Luster J, Shrestha J, Niklaus PA. Analysis of carbon and nitrogen dynamics in riparian soils: model validation and sensitivity to environmental controls. The Science of the total environment. 2012;429:246-56. https://doi.org/10.1016/j.scitotenv.2012.04.026
Hazard C, Boots B, Keith AM, Mitchell DT, Schmidt O, Doohan FM, et al. Temporal variation outweighs effects of biosolids applications in shaping arbuscular mycorrhizal fungi communities on plants grown in pasture and arable soils. Applied Soil Ecology. 2014;82:52-60. https://doi.org/10.1016/j.apsoil.2014.05.007
Oliver DP, Kookana RS, Miller R, Correll RL. Comparative environmental impact assessment of herbicides used on genetically modified and non-genetically modified herbicide-tolerant canola crops using two risk indicators The Science of the total environment. 2016;557-558: 754-63. https://doi.org/10.1016/j.scitotenv.2016.03.106
Eltzov E, Yehuda A, Marks R. Creation of a new portable biosensor for water toxicity determination. Sensors and Actuators. 2015;221:1044-1054. https://doi.org/10.1016/j.snb.2015.06.153
Karnwal A, Bhardwaj V. Bioremediation of heavy metals (Zn and Cr) using microbial biosurfactant. Journal of Environmental Research and Protection. 2014;11(1):29-33.
Peixoto J, Silva LP, Krüger R. Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater. 2017;324:634-644. https://doi.org/10.1016/j.jhazmat.2016.11.037
Sain S, Sengupta S, Kar A, Mukhopadhyay A, Sengupta S, Kar T, et al. Effect of modified cellulose fibres on the biodegradation behaviour of in-situ formed PMMA/cellulose composites in soil environment: Isolation and identification of the composite degrading fungus. Polymer Degradation and Stability, 2014;99(1):156-165. https://doi.org/10.1016/j.polymdegradstab.2013.11.012
Boddu VM, Paul T, Page MA, Byl C, Ward L, Ruan J. Gray water recycle: Effect of pretreatment technologies on low pressure reverse osmosis treatment. Journal of Environmental Chemical Engineering. 2016;4(4):4435-4443. https://doi.org/10.1016/j.jece.2016.09.031
Girardi C, Nowak K, Carranza-Diaz O, Lewkow B, Miltner A, Gehre M, et al. Microbial degradation of the pharmaceutical ibuprofen and the herbicide 2,4-D in water and soil — Use and limits of data obtained from aqueous systems for predicting their fate in soil. Science of the Total Environment. 2013;444(1):32-42. https://doi.org/10.1016/j.scitotenv.2012.11.051
Daza-Serna LV, Solarte-Toro JC, Serna-Loaiza S, Chacón-Pérez Y, Cardona-Alzate CA. Agricultural Waste Management Through Energy Producing Biorefineries: The Colombian Case. Waste Biomass Valor. 2016;7(4):789-798. https://doi.org/10.1007/s12649-016-9576-3
Prieto MA, Ferreira I, Vázquez JA, Prieto I. An environmental management industrial solution for the treatment and reuse of mussel wastewaters. Science of the Total Environment. 2015;538(15):117-128. https://doi.org/10.1016/j.scitotenv.2015.07.041
Krueger C, Radetski CM, Bendia AG, Oliveira IM, Castro-Silva MA, Rambo CR, et al. Bioconversion of cassava starch by-product into Bacillus and related bacteria polyhydroxyalkanoates. Electronic Journal of Biotechnology. 2012;15(3):8-8. https://doi.org/10.2225/vol15-issue3-fulltext-6
Prajapati SK; Choudhary P, Malik A, Vijay VK. Algae mediated treatment and bioenergy generation process for handling liquid and solid waste from dairy cattle farm. Bioresource Technology. 2014;167:260-268. https://doi.org/10.1016/j.biortech.2014.06.038
Mishra P, Roy S, Das D. Comparative evaluation of the hydrogen production by mixed consortium, synthetic co-culture and pure culture using distillery effluent. Bioresource Technology. 2015;198:593-602. https://doi.org/10.1016/j.biortech.2015.09.074
Ravikumar J, Samuthiravelu P, Qadri, SMH, Hemanthkumar L, Vijayakumar R, Sakthivel N, et al. Role of Decomposer Microbial Consortium in Sericultural Waste Management. Acta Biologica Indica. 2014;3(2):668-671.
Kajikawa Y, Tacoa F, Yamaguchi K. Sustainability science: the changing landscape of sustainability research. Sustainability Science. 2014;9(4):431-438. https://doi.org/10.1007/s11625-014-0244-x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Hechos Microbiológicos

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.