What does ‘microbiology for sustainable development’ mean?

Authors

  • Walter Alfredo Salas Zapata University of Antioquia

DOI:

https://doi.org/10.17533/udea.hm.337548

Keywords:

microbiology, sustainability, research

Abstract

The  quest  for  sustainable  development  as  a  purpose  of  microbiology  has  at  least  two  implications:  i)  research  in  microbiology  has  the  ultimate  aim  of  leading  societies  to  reach  the  convergence  of  economic  prosperity,  social  wellbeing  and  environmental  protection  and,  ii)  microorganisms  should  be  used  to  improve  the  social-ecological  adaptability  of  human  activities.  The  current  state  of  research  in  microbiology  related  to  sustainable  development  shows that studies have focused on challenges in the field of agriculture, livestock, and energy production, and in fields where microorganisms have diverse uses such as ecosystems monitoring, pollutant biodegradation and waste utilization  (by-product  generation).  However,  despite  all  these  uses  being  essential  for  microbiology  to  contribute  to  sustainable  development,  it  is  necessary  to  resolve  other  problems  not  easily  detectable  in  studies  related  to  microbiology development. There are, at least, three challenges: firstly, the exploration of micro-biodiversity in order to provide more alternatives of transformation for industrial activities; secondly, the sustainability analysis of those human activities that have already included microbial technologies to make them more sustainable; and thirdly, the need to train microbiologists on sustainable development.

|Abstract
= 1100 veces | PDF (ESPAÑOL (ESPAÑA))
= 1247 veces|

Downloads

Author Biography

Walter Alfredo Salas Zapata, University of Antioquia

PhD in Sustainability, Health and Sustainability Research Group, School of Microbiology, University of Antioquia.

References

Salas-Zapata WA, Ríos-Osorio LA, Cardona-Arias JA. Methodological characteristics of sustainability science: a systematic review. Environment Development and Sustainability. 2017;19(4):1127-1140. https://doi.org/10.1007/s10668-016-9801-z

Salas-Zapata, WA, Ortiz-Muñoz, SM. Analysis of meanings of the concept of sustainability. Sustainable Development. 2018;27(1)153-161. https://doi.org/10.1002/sd.1885

World Commission on Environment and Development. Our common future. Report of the World Commission on Environment and Development. United Nations Doc A/42/427. New York: United Nations;1987. 374 p.

Hansson S. Technology and the notion of sustainability. Technology in Society. 2010; 32:274–279.

Bodin P, Wiman B. Resilience and other stability concepts in ecology: notes on their origin, validity and usefulness. ESS Bull. 2004;2:33-43

.6. Folke C. Resilience: The emergence of a perspective for social-ecological systems. Global Environmental Change. 2006;16(3):253–267.

Holling C. Understanding the complexity of economic, ecological, and social systems. Ecosystems. 2001;4:390–405

Berkes F, Colding J, Folke C. Introduction. In: Berkes (Ed.), Navigating socialecological systems: Building resilience for complexity and change. Cambridge (UK): Cambridge University Press, 2003

Ortiz-Muñoz S, Mejía-Escobar JA, Ríos-Osorio LA, Salas-Zapata WA. Análisis de los micro-contextos de la investigación en microbiología desde la perspectiva de la sostenibilidad. Panace@: Revista de Medicina, Lenguaje y Traducción. 2017;45(9):19-29.

Salas-Zapata W, Zuluaga-González D, Alzate-Caicedo E. Procesos microbianos y actividades humanas relacionados con problemas de insostenibilidad: Revisión sistemática 2005-2012. Hechos microbiológicos. 2019 (Hechos Microbiol. 2016;7(1-2):39-51.

Zuluaga-Mazo C, Arango-Bermudez D, Salas-Zapata, W. Profile of the use of microorganisms within environmental management: Systematic review 2012-2017. Informe de investigación.

Aylagas E, Borja A, Tangherlini M, Dell’Anno A, Corinaldesi C, Michell CT, Irigoien X, Danovaro R, Rodríguez-Ezpeleta N. A bacterial community-based index to assess the ecological status of estuarine and coastal environments. Marine pollution bulletin. 2017;114(2):679-688 https://doi.org/10.1016/j.marpolbul.2016.10.050

Fisher D, Yonkos L, Ziegler G, Friedel E, Burton D. Acute and chronic toxicity of selected disinfection byproducts to Daphnia magna, Cyprinodon variegatus, and Isochrysis galbana. Water Research. 2014;55:233-244 https://doi.org/10.1016/j.watres.2014.01.056

Técher D, Laval-Gilly P, Bennasroune A, Henry S, Martinez-Chois C, D’Innocenzo M, et al. An appraisal of Miscanthus x giganteus cultivation for fly ash revegetation and soil restoration Industrial Crops and Products. 2012; 6(1):427-433. https://doi.org/10.1016/j.indcrop.2011.10.009

Batlle-Aguilar J, Brovelli A, Barry DA, Luster J, Shrestha J, Niklaus PA. Analysis of carbon and nitrogen dynamics in riparian soils: model validation and sensitivity to environmental controls. The Science of the total environment. 2012;429:246-56. https://doi.org/10.1016/j.scitotenv.2012.04.026

Hazard C, Boots B, Keith AM, Mitchell DT, Schmidt O, Doohan FM, et al. Temporal variation outweighs effects of biosolids applications in shaping arbuscular mycorrhizal fungi communities on plants grown in pasture and arable soils. Applied Soil Ecology. 2014;82:52-60. https://doi.org/10.1016/j.apsoil.2014.05.007

Oliver DP, Kookana RS, Miller R, Correll RL. Comparative environmental impact assessment of herbicides used on genetically modified and non-genetically modified herbicide-tolerant canola crops using two risk indicators The Science of the total environment. 2016;557-558: 754-63. https://doi.org/10.1016/j.scitotenv.2016.03.106

Eltzov E, Yehuda A, Marks R. Creation of a new portable biosensor for water toxicity determination. Sensors and Actuators. 2015;221:1044-1054. https://doi.org/10.1016/j.snb.2015.06.153

Karnwal A, Bhardwaj V. Bioremediation of heavy metals (Zn and Cr) using microbial biosurfactant. Journal of Environmental Research and Protection. 2014;11(1):29-33.

Peixoto J, Silva LP, Krüger R. Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater. 2017;324:634-644. https://doi.org/10.1016/j.jhazmat.2016.11.037

Sain S, Sengupta S, Kar A, Mukhopadhyay A, Sengupta S, Kar T, et al. Effect of modified cellulose fibres on the biodegradation behaviour of in-situ formed PMMA/cellulose composites in soil environment: Isolation and identification of the composite degrading fungus. Polymer Degradation and Stability, 2014;99(1):156-165. https://doi.org/10.1016/j.polymdegradstab.2013.11.012

Boddu VM, Paul T, Page MA, Byl C, Ward L, Ruan J. Gray water recycle: Effect of pretreatment technologies on low pressure reverse osmosis treatment. Journal of Environmental Chemical Engineering. 2016;4(4):4435-4443. https://doi.org/10.1016/j.jece.2016.09.031

Girardi C, Nowak K, Carranza-Diaz O, Lewkow B, Miltner A, Gehre M, et al. Microbial degradation of the pharmaceutical ibuprofen and the herbicide 2,4-D in water and soil — Use and limits of data obtained from aqueous systems for predicting their fate in soil. Science of the Total Environment. 2013;444(1):32-42. https://doi.org/10.1016/j.scitotenv.2012.11.051

Daza-Serna LV, Solarte-Toro JC, Serna-Loaiza S, Chacón-Pérez Y, Cardona-Alzate CA. Agricultural Waste Management Through Energy Producing Biorefineries: The Colombian Case. Waste Biomass Valor. 2016;7(4):789-798. https://doi.org/10.1007/s12649-016-9576-3

Prieto MA, Ferreira I, Vázquez JA, Prieto I. An environmental management industrial solution for the treatment and reuse of mussel wastewaters. Science of the Total Environment. 2015;538(15):117-128. https://doi.org/10.1016/j.scitotenv.2015.07.041

Krueger C, Radetski CM, Bendia AG, Oliveira IM, Castro-Silva MA, Rambo CR, et al. Bioconversion of cassava starch by-product into Bacillus and related bacteria polyhydroxyalkanoates. Electronic Journal of Biotechnology. 2012;15(3):8-8. https://doi.org/10.2225/vol15-issue3-fulltext-6

Prajapati SK; Choudhary P, Malik A, Vijay VK. Algae mediated treatment and bioenergy generation process for handling liquid and solid waste from dairy cattle farm. Bioresource Technology. 2014;167:260-268. https://doi.org/10.1016/j.biortech.2014.06.038

Mishra P, Roy S, Das D. Comparative evaluation of the hydrogen production by mixed consortium, synthetic co-culture and pure culture using distillery effluent. Bioresource Technology. 2015;198:593-602. https://doi.org/10.1016/j.biortech.2015.09.074

Ravikumar J, Samuthiravelu P, Qadri, SMH, Hemanthkumar L, Vijayakumar R, Sakthivel N, et al. Role of Decomposer Microbial Consortium in Sericultural Waste Management. Acta Biologica Indica. 2014;3(2):668-671.

Kajikawa Y, Tacoa F, Yamaguchi K. Sustainability science: the changing landscape of sustainability research. Sustainability Science. 2014;9(4):431-438. https://doi.org/10.1007/s11625-014-0244-x

Published

2019-07-13

How to Cite

Salas Zapata, W. A. (2019). What does ‘microbiology for sustainable development’ mean?. Hechos Microbiológicos, 9(1-2), 43–50. https://doi.org/10.17533/udea.hm.337548

Issue

Section

Artículos de reflexión

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.