Regulación del inflamasoma NLRP3: bioquímica y más allá de ella

Autores/as

  • Neudo Buelvas Jiménez Instituto Venezolano de Investigaciones Científicas
  • Raibel Janis Suárez Useche Instituto Venezolano de Investigaciones Científicas

DOI:

https://doi.org/10.17533/udea.iatreia.v28n2a07

Palabras clave:

caspasa-1, epigenética, inflamasoma, NLRP3, regulación

Resumen


La inmunidad innata responde a la infección y al daño tisular activando una plataforma molecular denominada inflamasoma. En las investigaciones clínicas con humanos, se han descrito cuatro clases de inflamasomas relacionados con procesos inflamatorios: NLRP1, NLRC4, NLRP3 y AIM-2. De ellos, NLRP3 es el mejor estudiado. Los inflamasomas tienen como finalidad común el procesamiento y activación de la caspasa-1, enzima responsable de la maduración de pro-IL-1β y pro-IL-18. El control génico y la regulación bioquímica de esta plataforma son fundamentales para evitar el desarrollo de enfermedades inmunológicas, metabólicas y neurológicas. Algunos de los mecanismos más importantes en la modulación de la actividad del inflamasoma son: los polimorfismos en los genes codificadores de las proteínas del inflamasoma, la ubiquitinación, la regulación redox, la concentración de ATP y la señalización paracrina mediante factores de transcripción e interleucinas. Existe, además, otro tipo de regulación que se ejerce por mecanismos epigenéticos como la metilación y la expresión de micro-ARN. En conjunto, estos mecanismos son indispensables para la expresión coordinada y el funcionamiento correcto de estas plataformas moleculares ante un determinado patógeno o daño celular. Las investigaciones sobre los diversos componentes de los inflamasomas y su inhibición controlada están esclareciendo aspectos que permitirán controlar enfermedades asociadas con estos complejos moleculares. 

|Resumen
= 231 veces | PDF
= 128 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Neudo Buelvas Jiménez, Instituto Venezolano de Investigaciones Científicas

Instituto Venezolano de Investigaciones Cientificas, Centro de Investigaciones Biomedicas, Laboratorio de Inmunobiología, Profesional Asociado a la Investigación.

Raibel Janis Suárez Useche, Instituto Venezolano de Investigaciones Científicas

Instituto Venezolano de Investigaciones Cientificas, Centro de Investigaciones Biomedicas, Laboratorio de Inmunobiología, Profesional Asociado a la Investigación.

Citas

(1.) Chen S, Sun B. Negative regulation of NLRP3 inflammasome signaling. Protein Cell. 2013 Apr;4(4):251–8.

(2.) Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002 Aug;10(2):417–26.

(3.) Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature. 2012 Jan;481(7381):278–86.

(4.) Hong S, Hwang I, Lee YS, Park S, Lee WK, Fernandes T, et al. Restoration of ASC expression sensitizes colorectal cancer cells to genotoxic stress-induced caspase-independent cell death. Cancer Lett. 2013 May; 331(2): 183-191.

(5.) Ting JP-Y, Kastner DL, Hoffman HM. CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol. 2006 Mar;6(3):183–95.

(6.) Vajjhala PR, Mirams RE, Hill JM. Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein. J Biol Chem. 2012 Dec;287(50):41732–43.

(7.) Halff EF, Diebolder CA, Versteeg M, Schouten A, Brondijk THC, Huizinga EG. Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin. J Biol Chem. 2012 Nov;287(46):38460–72.

(8.) Schroder K, Tschopp J. The inflammasomes. Cell. 2010 Mar;140(6):821–32.

(9.) Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunol Rev. 2011 Sep;243(1):136–51.

(10.) Hsu L-C, Ali SR, McGillivray S, Tseng P-H, Mariathasan S, Humke EW, et al. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci U S A. 2008 Jun;105(22):7803–8.

(11.) Wickliffe KE, Leppla SH, Moayeri M. Anthrax lethal toxin-induced inflammasome formation and cas-pase-1 activation are late events dependent on ion fluxes and the proteasome. Cell Microbiol. 2008 Feb;10(2):332–43.

(12.) Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013 Jun;13(6):397–411.

(13.) Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, et al. The pannexin 1 channel activates the inflammasome in neurons and astro-cytes. J Biol Chem. 2009 Jul ;284(27):18143–51.

(14.) Mankan AK, Kubarenko A, Hornung V. Immunology in clinic review series; focus on autoinflammatory diseases: inflammasomes: mechanisms of activation. Clin Exp Immunol. 2012 Mar;167(3):369–81.

(15.) Turner CM, Arulkumaran N, Singer M, Unwin RJ, Tam FWK. Is the inflammasome a potential therapeutic target in renal disease? BMC Nephrol. 2014 Jan;15:21.

(16.) Zhao Y, Yang J, Shi J, Gong Y-N, Lu Q, Xu H, et al. The NLRC4 inflammasome receptors for bacterial fla-gellin and type III secretion apparatus. Nature. 2011 Sep;477(7366):596–600.

(17.) Lightfield KL, Persson J, Trinidad NJ, Brubaker SW, Kofoed EM, Sauer J-D, et al. Differential requirements for NAIP5 in activation of the NLRC4 inflammasome. Infect Immun. 2011 Apr;79(4):1606–14.

(18.) Saiga H, Kitada S, Shimada Y, Kamiyama N, Okuya-ma M, Makino M, et al. Critical role of AIM2 in Myco-bacterium tuberculosis infection. Int Immunol. 2012 Oct;24(10):637–44.

(19.) Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cyto-solic dsDNA and forms a caspase-1-activating inflam-masome with ASC. Nature. 2009 Mar;458(7237):514–8.

(20.) Bandyopadhyay S, Lane T, Venugopal R, Parthasa-rathy PT, Cho Y, Galam L, et al. MicroRNA-133a-1 regulates inflammasome activation through uncou-pling protein-2. Biochem Biophys Res Commun. 2013 Sep;439(3):407–12.

(21.) Kahlenberg JM, Dubyak GR. Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am J Physiol Cell Physiol. 2004 May;286(5):C1100–8.

(22.) Khakh BS, North RA. P2X receptors as cell-surface ATP sensors in health and disease. Nature. 2006 Aug;442(7102):527–32.

(23.) Shio MT, Tiemi Shio M, Eisenbarth SC, Savaria M, Vi-net AF, Bellemare M-J, et al. Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog. 2009 Aug;5(8):e1000559.

(24.) Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008 Aug;9(8):857–65.

(25.) Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagoso-mal destabilization. Nat Immunol. 2008 Aug;9(8):847–56.

(26.) So A, Busso N. The concept of the inflammasome and its rheumatologic implications. Joint Bone Spi-ne. 2014;81(5):381–464.

(27.) Mishra BB, Rathinam VAK, Martens GW, Martinot AJ, Kornfeld H, Fitzgerald KA, et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat Immunol. 2013 Jan;14(1):52–60.

(28.) Guarda G, Braun M, Staehli F, Tardivel A, Matt-mann C, Förster I, et al. Type I interferon inhibits

interleukin-1 production and inflammasome activa-tion. Immunity. 2011 Feb;34(2):213–23.

(29.) Oh JY, Ko JH, Lee HJ, Yu JM, Choi H, Kim MK, et al. Mesenchymal stem/stromal cells inhibit the NLRP3 inflammasome by decreasing mitochondrial reactive oxygen species. Stem Cells. 2014 Jun;32(6):1553–63.

(30.) Hu Y, Mao K, Zeng Y, Chen S, Tao Z, Yang C, et al. Tripartite-motif protein 30 negatively regulates NLRP3 inflammasome activation by modulating re-active oxygen species production. J Immunol. 2010 Dec;185(12):7699–705.

(31.) Ghonime MG, Shamaa OR, Das S, Eldomany RA, Fer-nandes-Alnemri T, Alnemri ES, et al. Inflammasome priming by lipopolysaccharide is dependent upon ERK signaling and proteasome function. J Immunol. 2014 Apr;192(8):3881–8.

(32.) Hara H, Tsuchiya K, Kawamura I, Fang R, Hernandez-Cuellar E, Shen Y, et al. Phosphorylation of the adap-tor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammaso-me activity. Nat Immunol. 2013 Dec;14(12):1247–55.

(33.) Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. Non-transcriptional priming and deu-biquitination regulate NLRP3 inflammasome activation. J Biol Chem. 2012 Oct;287(43):36617–22.

(34.) Py BF, Kim M-S, Vakifahmetoglu-Norberg H, Yuan J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell. 2013 Jan;49(2):331–8.

(35.) Yuk J-M, Jo E-K. Crosstalk between autophagy and inflammasomes. Mol Cells. 2013 Nov;36(5):393–9.

(36.) Shi C-S, Shenderov K, Huang N-N, Kabat J, Abu-Asab M, Fitzgerald KA, et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol. 2012 Mar;13(3):255–63.

(37.) Dupont N, Jiang S, Pilli M, Ornatowski W, Bhatta-charya D, Deretic V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 2011 Nov;30(23):4701–11.

(38.) Aróstegui JI. [Pathophysiological mechanisms un-derlying cryopyrin-associated periodic syndromes: genetic and molecular basis and the inflammasome]. Med Clin (Barc). 2011 Jan;136 Suppl:22–8.

(39.) Anderson JP, Mueller JL, Misaghi A, Anderson S, Sivagnanam M, Kolodner RD, et al. Initial description of the human NLRP3 promoter. Genes Immun. 2008 Dec;9(8):721–6.

(40.) Conforti-Andreoni C, Ricciardi-Castagnoli P, Morte-llaro A. The inflammasomes in health and disease: from genetics to molecular mechanisms of autoin-flammation and beyond. Cell Mol Immunol. 2011 Mar;8(2):135–45.

(41.) Glinsky G V. SNP-guided microRNA maps (MirMaps) of 16 common human disorders identify a clinically accessible therapy reversing transcriptional aberrations of nuclear import and inflammasome pathways. Cell Cycle. 2008 Nov;7(22):3564–76.

(42.) Bryan NB, Dorfleutner A, Kramer SJ, Yun C, Rojanasa-kul Y, Stehlik C. Differential splicing of the apoptosis-associated speck like protein containing a caspase re-cruitment domain (ASC) regulates inflammasomes. J Inflamm (Lond). 2010 Jan;7:23-35.

(43.) Feng Q, Li P, Leung PCK, Auersperg N. Caspase-1zeta, a new splice variant of the caspase-1 gene. Geno-mics. 2004 Sep;84(3):587–91.

(44.) Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. J Immu-nol. 2012 Oct;189(8):4175–81.

(45.) Bartel DP. MicroRNAs: target recognition and regula-tory functions. Cell. 2009 Jan;136(2):215–33.

(46.) Ghorai A, Ghosh U. miRNA gene counts in chro-mosomes vary widely in a species and biogenesis of miRNA largely depends on transcription or post-transcriptional processing of coding genes. Front Ge-net. 2014 Jan;5:100.

(47.) Haneklaus M, Gerlic M, Kurowska-Stolarska M, Rai-ney A-A, Pich D, McInnes IB, et al. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 in-flammasome and IL-1β production. J Immunol. 2012 Oct;189(8):3795–9.

(48.) Halappanavar S, Nikota J, Wu D, Williams A, Yauk CL, Stampfli M. IL-1 receptor regulates microRNA-135b expression in a negative feedback mechanism during cigarette smoke-induced inflammation. J Immunol. 2013 Apr;190(7):3679–86.

(49.) Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, et al. MicroRNA-155 modula-tes the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A. 2009 Feb;106(8):2735–40.

(50.) Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011 Aug;3(4):503–18.

(51.) Salminen A, Kauppinen A, Hiltunen M, Kaarniranta K. Epigenetic regulation of ASC/TMS1 expression: po-tential role in apoptosis and inflammasome function. Cell Mol Life Sci. 2014 May;71(10):1855–64.

(52.) Chowdhury S, Erickson SW, MacLeod SL, Cleves MA, Hu P, Karim MA, et al. Maternal genome-wide DNA methylation patterns and congenital heart defects. PLoS One. 2011 Jan;6(1):e16506.

(53.) Strickland FM, Richardson BC. Epigenetics in human autoimmunity. Epigenetics in autoimmunity - DNA methylation in systemic lupus erythematosus and beyond. Autoimmunity. 2008 May;41(4):278–86.

(54.) Raciti GA, Nigro C, Longo M, Parrillo L, Miele C, For-misano P, et al. Personalized medicine and type 2 diabetes: lesson from epigenetics. Epigenomics. 2014 Apr;6(2):229–38.

(55.) Lucas ME, Crider KS, Powell DR, Kapoor-Vazirani P, Vertino PM. Methylation-sensitive regulation of TMS1/ASC by the Ets factor, GA-binding protein-alpha. J Biol Chem. 2009 May;284(22):14698–709.

(56.) Stimson KM, Vertino PM. Methylation-mediated si-lencing of TMS1/ASC is accompanied by histone hypoacetylation and CpG island-localized changes in chromatin architecture. J Biol Chem. 2002 Feb;277(7):4951–8.

(57.) Ueki T, Takeuchi T, Nishimatsu H, Kajiwara T, Moriya-ma N, Narita Y, et al. Silencing of the caspase-1 gene occurs in murine and human renal cancer cells and causes solid tumor growth in vivo. Int J Cancer. 2001 Mar;91(5):673–9.

(58.) Wessels I, Fleischer D, Rink L, Uciechowski P. Chan-ges in chromatin structure and methylation of the human interleukin-1beta gene during monopoiesis. Immunology. 2010 Jul;130(3):410–7.

Descargas

Publicado

2015-04-09

Cómo citar

1.
Buelvas Jiménez N, Suárez Useche RJ. Regulación del inflamasoma NLRP3: bioquímica y más allá de ella. Iatreia [Internet]. 9 de abril de 2015 [citado 4 de julio de 2022];28(2):170-8. Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/19507

Número

Sección

Artículos de revisión

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.