La edición del ADN: ad portas de una revolución en la manipulación genética

Autores/as

DOI:

https://doi.org/10.17533/udea.iatreia.56

Palabras clave:

edición genética, ingeniería genética, proteínas asociadas a CRISPR, terapia genética

Resumen


Dentro del mundo de las ciencias biológicas la terapia génica ha sido un tema llamativo desde su aparición. El desarrollo de nuevas tecnologías y avances en el campo de la bioingeniería como las nucleasas de dedos de zinc (ZFN), las nucleasas tipo activadores de transcripción (TALEN) y las repeticiones palindrómicas cortas agrupadas y regularmente interespaciadas (CRISPR/Cas9), abrieron las puertas a un sinnúmero de posibilidades en biología, entre ellas, la edición del genoma. Esta última consiste en la modificación directa del genoma a través de la introducción o escisión de secuencias nucleotídicas dentro de la hebra de ADN. Hoy en día su aplicación es extensa, desde el campo de la agroindustria y el control de plagas hasta el ámbito clínico con la “corrección” de enfermedades mendelianas, modulación de receptores inmunológicos en enfermedades infecciosas, modificaciones genéticas en líneas germinales, entre muchos otros empleos. Sin embargo, desde su descubrimiento en 1987, el sistema CRISPR/Cas9 no ha estado exento de polémica en aspectos bioéticos, la adquisición de su patente e, incluso, en cuanto a su eficacia. A pesar de las dificultades e incertidumbre que han surgido, el futuro del sistema es prometedor dada su sencillez y versatilidad de uso.

|Resumen
= 763 veces | PDF
= 672 veces| | HTML
= 35 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Ithzayana Madariaga-Perpiñan, Pontificia Universidad Javeriana

Estudiante de Medicina, Semillero de Investigación en Farmacología.

Juan Camilo Duque-Restrepo, Pontificia Universidad Javeriana

Estudiante de Medicina, Semillero de Investigación en Farmacología. Facultad de Medicina.

Paola Ayala-Ramírez, Pontificia Universidad Javeriana

Profesora. Instituto de Genética Humana, Facultad de Medicina.

Reggie García-Robles, Pontificia Universidad Javeriana

Profesor. Departamento de Ciencias Fisiológicas, Facultad de Medicina.

Citas

(1) Dupuis MÈ, Villion M, Magadán AH, Moineau S. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nat Commun. 2013;4:2087. DOI 10.1038/ncomms3087.

(2) Gaj T, Gersbach CA, Barbas CF 3dr. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):3974405. DOI 10.1016/j.tibtech.2013.04.004.

(3) Garcia-Robledo JE, Barrera MC, Tobón GJ. CRISPR/Cas: from adaptive immune system in prokaryotes to therapeutic weapon against immune-related diseases. Int Rev Immunol. 2020;(39)1:11-20. DOI 10.1080/08830185.2019.1677645.

(4) Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482(7385):331-8. DOI 10.1038/nature10886.

(5) Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20(8):490-507. DOI 10.1038/s41580-019-0131-5.

(6) Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, Smith AVB. Advances in CRISPR-Cas9 genome engineering: Lessons learned from RNA interference. Nucleic Acids Res. 2015;43(7):3407–19. DOI 10.1093/nar/gkv226.

(7) Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21. DOI 10.1126/science.1225829.

(8) Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002 Mar;43(6):1565-75. DOI 10.1046/j.1365-2958.2002.02839.x.

(9) Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262-78. DOI 10.1016/j.cell.2014.05.010.

(10) Dance A. Core Concept: CRISPR gene editing. Proc Natl Acad Sci U S A. 2015;112(20):6245-6. DOI 10.1073/pnas.1503840112.

(11) Savić N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res. 2016;168:15-21. DOI 10.1016/j.trsl.2015.09.008.

(12) Weil PA. Genética molecular, DNA recombinante y tecnología genómica. In: Rondweel VW, Bender DA, Bothman KM, Kenelly PJ, Weil PA. Harper. Bioquímica ilustrada. 30 ed. Mexico, D.F: McGraw Hill; 2016.

(13) Xiong X, Chen M, Lim WA, Zhao D, Qi LS. CRISPR/Cas9 for Human Genome Engineering and Disease Research. Annu Rev Genomics Hum Genet. 2016;17:131-54. DOI 10.1146/annurev-genom-083115-022258.

(14) Redman M, King A, Watson C, King D. What is CRISPR/Cas9? Arch Dis Child Educ Pract Ed. 2016;101(4):213-5. DOI 10.1136/archdischild-2016-310459.

(15) Hille F, Charpentier E. CRISPR-Cas: biology , mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci. 2016;371(1707). DOI 10.1098/rstb.2015.0496.

(16) Tian X, Gu T, Patel S, Bode AM, Lee MH, Dong Z. CRISPR/Cas9 - An evolving biological tool kit for cancer

biology and oncology. NPJ Precis Oncol. 2019 Mar 18;3:8. DOI 10.1038/s41698-019-0080-7.

(17) Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24:1526-33. DOI 10.1101/gr.173427.114.

(18) Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy

in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014;345(6201):1184-8. DOI 10.1126/science.1254445.

(19) Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Ccell. 2013;13(6):653-8. DOI 10.1016/j.stem.2013.11.002.

(20) Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014,159(2):440-55. DOI 10.1016/j.cell.2014.09.014.

(21) Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510. DOI 10.1038/srep02510.

(22) Zhen S, Hua L, Takahashi Y, Narita S, Liu YH, Li Y. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun. 2014;450(4):1422-6. DOI 10.1016/j.bbrc.2014.07.014.

(23) Wagner JC, Platt RJ, Goldfless SJ, Zhang F, Niles JC. Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum. Nat Methods. 2014;11:915-8. DOI 10.1038/nmeth.3063.

(24) Moreno AM, Mali P. Therapeutic genome engineering via CRISPR-Cas systems. Wiley Interdiscip Rev Syst Biol Med. 2017;9(4). DOI 10.1002/wsbm.1380.

(25) Ma Y, Zhang L, Huang X. Genome modification by CRISPR/Cas9. FEBS J. 2014;281(23):5186-93. DOI 10.1111/febs.13110.

(26) Charlesworth C, Deshpande P, Dever D, Camarena J, Lemgart V, Cromer MK et al. Identification of preexisting

adaptive immunity to Cas9 proteins in humans. Nat Med. 2019;25(2):249-54. DOI 10.1038/s41591-018-0326-x.

(27) Kim EJ, Kang KH, Ju JH. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med. 2017;32(1):42–61. DOI 10.3904/kjim.2016.198.

(28) Xiao-Jie L, Hui-Ying X, Zun-Ping K, Jin-Lian C, Li-Juan J. CRISPR-Cas9: A new and promising player in gene therapy. J Med Genet. 2015;52(5):289-96. DOI 10.1136/jmedgenet-2014-102968.

(29) Pellagatti A, Dolatshad H, Valletta S, Boultwood J. Application of CRISPR/Cas9 genome editing to the study and treatment of disease. Arch Toxicol. 2015;89(7):1023–34. DOI 10.1007/s00204-015-1504-y.

(30) Castillo A. Edición de genes para el tratamiento del cáncer de pulmón (CRISPR-Cas9). Colomb Med. 2016;47:178-80.

(31) Ledford H. Titanic clash over CRISPR patents turns ugly. Nature. 2016;537(7621):460–1. DOI 10.1038/537460a.

(32) Du D, Qi LS. CRISPR Technology for Genome Activation and Repression in Mammalian Cells. Cold Spring Harb Protoc. 2016 Jan 4;2016(1). DOI 10.1101/pdb.prot090175.

(33) Huang Y, Porter A, Zhang Y, Barrangou R. Collaborative networks in gene editing. Nat Biotechnol. 2019 Oct;37(10):1107-9. DOI 10.1038/s41587-019-0275-z.

(34) Im W, Moon J, Kim M. Applications of CRISPR/Cas9 for Gene Editing in Hereditary Movement Disorders. J Mov Disord. 2016;9(3):136-43. DOI 10.14802/jmd.16029.

(35) Cyranoski D. The CRISPR-baby scandal: what’s next for human gene-editing. Nature. 2019 Feb;566(7745):440-2. DOI 10.1038/d41586-019-00673-1.

(36) Reardon S. Gene edits to ‘CRISPR babies’ might have shortened their life expectancy. Nature. 2019 Jun;570(7759):16-7. DOI 10.1038/d41586-019-01739-w.

(37) Wei X, Nielsen R. CCR5-Δ32 is deleterious in the homozygous state in humans. Nat Med. 2019 Jun;25(6):909-

DOI 10.1038/s41591-019-0459-6.

(38) Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149-57. DOI 10.1038/s41586-019-1711-4.

(39) Bellver V. La revolución de la edición genética mediante crispr-cas9 y los desafíos éticos y regulatorios que comporta. Cuad Bioet. 2016;27(2):223-39.

Descargas

Publicado

2020-04-07

Cómo citar

1.
Madariaga-Perpiñan I, Duque-Restrepo JC, Ayala-Ramírez P, García-Robles R. La edición del ADN: ad portas de una revolución en la manipulación genética. Iatreia [Internet]. 7 de abril de 2020 [citado 8 de agosto de 2022];33(3):262-7. Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/339199

Número

Sección

Artículos de revisión

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.