Una alternativa de análisis de redes en la exploración de los estados de salud mental, condiciones crónicas y COVID-19

Autores/as

  • Cristian Ramos-Vera Universidad Cesar Vallejo. Lima. Perú https://orcid.org/0000-0002-3417-5701
  • Lupe García-Ampudia Universidad Nacional Mayor de San Marcos
  • Antonio Serpa-Barrientos Universidad Nacional Mayor de San Marcos

DOI:

https://doi.org/10.17533/udea.iatreia.161

Palabras clave:

Comorbilidad , COVID-19 , Diagnóstico , Métodos , Salud Mental , Signos y Síntomas

Resumen


El análisis de redes es una técnica estadística gráfica que permite visualizar e interpretar intuitivamente asociaciones entre síntomas y múltiples variables vinculadas al funcionamiento y espectro de diversas condiciones de salud. Siendo de relevancia clínica en el contexto actual de la pandemia de COVID-19, y ante su poca difusión en Sudamérica, se tuvo como objetivo un análisis narrativo de este modelo de red durante la pandemia.

Se realizó una revisión narrativa de los estudios empíricos publicados desde mayo de 2020 a julio de 2021 en la base de datos de PubMed y Sciendirect. Se seleccionaron las investigaciones que utilizaron redes psicométricas de correlación parcial en participantes evaluados durante la pandemia de COVID-19. Esta revisión reporta 13 estudios de red que utilizaron mayormente síntomas relacionados a la ansiedad (7 estudios), depresión (6 estudios) y estrés (6 estudios).

La información resultante se agrupa en 3 grupos (publicaciones en revistas de psiquiatría, ciencias psicológicas, medicina y afines). La revisión presentada refiere que este análisis de red permite una nueva forma de identificar aspectos clínicos importantes como la comorbilidad, concurrencia de los síntomas y medidas no sintomatológicas, agrupaciones de síntomas con otras variables de naturaleza latente u observable que comparten una causa común, la exploración de nuevas hipótesis clínicas holísticas con variables epidemiológicas, psicológicas, biomédicas y contextuales de mayor interés, como la comparación de sistemas de asociación causal de variables de múltiples niveles en el proceso psicobiológico y sus factores de riesgo y protección en varios periodos de tiempo.

|Resumen
= 109 veces | PDF
= 63 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Cristian Ramos-Vera, Universidad Cesar Vallejo. Lima. Perú

Sociedad Peruana de Psicometría. Psicólogo Investigador. Lima, Perú.

Lupe García-Ampudia, Universidad Nacional Mayor de San Marcos

Universidad Nacional Mayor de San Marcos. Docente de Psicología. Lima, Perú.

Antonio Serpa-Barrientos, Universidad Nacional Mayor de San Marcos

Universidad Nacional Mayor de San Marcos. Docente de Psicología. Lima, Perú.

Citas

(1) Ramos-Vera C. Las redes de relación estadística en la investigación psiquiátrica: el caso del delirio en el contexto de COVID-19. Rev Colombiana Psiquiatría. 2021. DOI 10.1016/j.rcp.2021.02.004.

(2) Fried EI, van Borkulo CD, Cramer AO, Boschloo L, Schoevers RA, Borsboom D. Mental disorders as networks of problems: a review of recent insights. Soc Psychiatry Psychiatr Epidemiol. 2017;52(1):1-10. DOI 10.1007/s00127-016-1319-z.

(3) Muniangi-Muhitu H, Akalestou E, Salem V, Misra S, Oliver NS, Rutter GA. Covid-19 and Diabetes: A Complex Bidirectional Relationship. Front Endocrinol. 2020;11:e582936. DOI 10.3389/fendo.2020.582936.

(4) Epskamp S, Fried EI. A tutorial on regularized partial correlation networks. Psychol Methods 2018;23:617–34. DOI 10.1037/met0000167.

(5) Kappelmann N, Czamara D, Rost N, Moser S, Schmoll V, Trastulla L, et al. Polygenic risk for immuno-metabolic markers and specific depressive symptoms: A multi-sample network analysis study. Brain Behav Immun. 2021;95:256-68. DOI 10.1101/2021.01.07.20248981.

(6) Ramos-Vera C. Conceptos de interés en la atención integral de los pacientes con multimorbilidad. Aten Primaria. 2021,53(6),e101969. DOI 10.1016/j.aprim.2021.101969.

(7) Leme DEDC, Alves EVDC, Fattori A. Relationships Between Social, Physical, and Psychological Factors in Older Persons: Frailty as an Outcome in Network Analysis. J Am Med Dir Assoc. 2020;21(9):1309-15.e4. DOI 10.1016/j.jamda.2020.02.005.

(8) Isvoranu AM, Abdin E, Chong SA. Vaingankar J, Boorsbom D, Subramaniam S. Extended network analysis: from psychopathology to chronic illness. BMC Psychiatry 2021;21(1):119. DOI 10.1186/S12888-021-03128-Y.

(9) Skjerdingstad N, Johnson MS, Johnson SU, Hoffart A, Ebrahimi OV. Feelings of worthlessness links depressive symptoms and parental stress: A network analysis during the COVID-19 pandemic. Eur Psychiatry. 2021;64(1):e50. DOI 10.1192/j.eurpsy.2021.2223.

(10) Bogaerts S, van Woerkom M, Erbaş Y, De Caluwé E, Garofalo C, Frowijn I, et al. Associations Between Resilience, Psychological Well-Being, Work-Related Stress and Covid-19 Fear in Forensic Healthcare Workers Using a Network Analysis. Front Psychiatry. 2021;12:e678895. DOI 10.3389/fpsyt.2021.678895.

(11) Ge F, Zheng A, Wan M, Luo G, Zhang J. Psychological State Among the General Chinese Population Before and During the COVID-19 Epidemic: A Network Analysis. Front Psychiatry. 2021;12:e591656. DOI 10.3389/fpsyt.2021.591656.

(12) Wang Y, Hu Z, Feng Y, Wilson A, Chen R. Changes in network centrality of psychopathology symptoms between the COVID-19 outbreak and after peak. Mol Psychiatry. 2020;25(12):3140-9. DOI10.1038/s41380-020-00881-6.

(13) Ramos-Vera CA. Las relaciones dinámicas de red de la obsesión y la ansiedad ante la muerte por COVID-19 durante la segunda cuarentena en universitarios peruanos. Rev Colomb Psiquiatr. 2021. DOI 10.1016/j.rcp.2021.03.004.

(14) Ramos-Vera CA. Relaciones de red del complejo estigma-discriminación y el miedo al COVID-19 durante la segunda ola pandémica en adultos peruanos. Rev Colomb Psiquiatr. 2021. DOI 10.1016/rcp.2021.05.010.

(15) Ramos-Vera CA. La dinámica interna de la Coronavirus Anxiety Scale mediante análisis de red. Rev Colomb Psiquiatr. 2021. DOI 10.1016/j.rcp.2020.12.008.

(16) Zavlis O, Butter S, Bennett K, Hartman TK, Hyland P, Mason L, et al. How does the COVID-19 pandemic impact on population mental health? A network analysis of COVID influences on depression, anxiety and traumatic stress in the UK population. Psychol Med. 2021;16:1-9. DOI 10.1017/S0033291721000635.

(17) Di Blasi M, Gullo S, Mancinelli E, Freda MF, Esposito G, Gelo OCG, et al. Psychological distress associated with the COVID-19 lockdown: A two-wave network analysis. J Affect Disord 2021;284:18-26. DOI 10.1016/j.jad.2021.02.016.

(18) Sun R, Qi J, Huang J, Zhou X. Network analysis of PTSD in college students across different areas after the COVID-19 epidemic. Eur J Psychotraumatol. 2021;12(1):1920203. DOI 10.1080/20008198.2021.1920203.

(19) Taylor S, Paluszek MM, Rachor GS, McKay D, Asmundson GJG. Substance use and abuse, COVID-19-related distress, and disregard for social distancing: A network analysis. Addict Behav. 2021;114:e106754. DOI 10.1016/j.addbeh.2020.106754.

(20) Invitto S, Romano D, Garbarini F, Bruno V, Urgesi C, Curcio G, et al. Major Stress-Related Symptoms During the Lockdown: A Study by the Italian Society of Psychophysiology and Cognitive Neuroscience. Front Public Health. 2021;9: e636089. DOI 10.3389/fpubh.2021.636089.

(21) Yu J, Mahendran R. COVID-19 lockdown has altered the dynamics between affective symptoms and social isolation among older adults: results from a longitudinal network analysis. Sci Rep. 2021;11(1):14739. DOI 10.1038/s41598-021-94301-6.

(22) Contreras A, Nieto I, Valiente C, Espinosa R, Vazquez C. The study of psychopathology from the network analysis perspective: A systematic review. Psychother Psychosom. 2019;88(2):71-83. DOI 10.1159/000497425.

(23) Robinaugh DJ, Hoekstra RHA, Toner ER, Borsboom D. The network approach to psychopathology: a review of the literature 2008-2018 and an agenda for future research. Psychol Med. 2020;50(3):353-66. DOI 10.1017/S0033291719003404.

(24) Pesonen AK, Lipsanen J, Halonen R, Elovainio M, Sandman N, Mäkelä JM, et al. Pandemic Dreams: Network Analysis of Dream Content During the COVID-19 Lockdown. Front Psychol. 2020;11:e573961. DOI 10.3389/fpsyg.2020.573961.

(25) Ramos-Vera C, Serpa A. Network Analysis of Posttraumatic Growth and Posttraumatic Stress Symptomatology in Covid-19 Infected Peruvian Adults. J Res Med Dent Sci. 2021;9(11):61-7. DOI 10.13140/RG.2.2.16367.56480.

(26) Williamson RE, Hoeboer CM, Primasari I, Qing Y, Coimbra BM, Hovnanyan A, et al. Symptom networks of COVID-19-related versus other potentially traumatic events in a global sample. J Anxiety Disord. 2021;84:e102476. DOI 10.1016/j.janxdis.2021.102476.

(27) Rha SY, Lee J. Stable Symptom Clusters and Evolving Symptom Networks in Relation to Chemotherapy Cycles. J Pain Symptom Manage. 2021;61(3):544-54. DOI 10.1016/j.jpainsymman.2020.08.008.

(28) Kashihara J, Takebayashi Y, Kunisato Y, Ito M. Classifying patients with depressive and anxiety disorders according to symptom network structures: A Gaussian graphical mixture model-based clustering. PLoS One. 2021;16(9):e0256902. DOI 10.1371/journal.pone.0256902.

(29) Zhu Z, Hu Y, Xing W, Guo M, Zhao R, Han S, Wu B. Identifying Symptom Clusters Among People Living with HIV on Antiretroviral Therapy in China: A Network Analysis. J Pain Symptom Manage. 2019;57(3):617-626. DOI 10.1016/j.jpainsymman.2018.11.011.

(30) Papachristou N, Barnaghi P, Cooper B, Kober KM, Maguire R, Paul S, et al. Network Analysis of the Multidimensional Symptom Experience of Oncology. Sci Rep. 2019;9(1):e2258. DOI 10.1038/s41598-018-36973-1.

(31) Malgaroli M, Calderon A, Bonanno GA. Networks of major depressive disorder: A systematic review. Clin Psychol Rev. 2021;85:e102000. DOI 10.1016/j.cpr.2021.102000.

(32) Borsboom D, Deserno MK, Rhemtulla M, Epskamp S, Fried EI, McNally RJ, et al. Network analysis of multivariate data in psychological science. Nat Rev Methods Primers. 2021;1:e58. DOI 10.1038/s43586-021-00055-w.

(33) Zhu Z, Wen H, Yang Z, Han S, Fu Y, Zhang L, Hu Y, Wu B. Evolving symptom networks in relation to HIV-positive duration among people living with HIV: A network analysis. Int J Infect Dis. 2021;108:503-9. DOI 10.1016/j.ijid.2021.05.084.

(34) Penzel N, Antonucci LA, Betz LT, et al. Association between age of cannabis initiation and gray matter covariance networks in recent onset psychosis. Neuropsychopharmacology. 2021;46(8):1484-93. DOI 10.1038/s41386-021-00977-9.

(35) Schlegl S, Smith KE, Vierl L, Crosby RD, Moessner M, Neumayr C, Voderholzer U. Using network analysis to compare diagnosis-specific and age-specific symptom networks in eating disorders. Int J Eat Disord. 2021. DOI 10.1002/eat.23523.

(36) Fried EI, von Stockert S, Haslbeck JMB, Lamers F, Schoevers RA, Penninx BWJH. Using network analysis to examine links between individual depressive symptoms, inflammatory markers, and covariates. Psychol Med. 2020;50(16):2682-90. DOI 10.1017/S0033291719002770.

(37) Levinson CA, Vanzhula IA, Smith TW, Stice E. Group and longitudinal intra-individual networks of eating disorder symptoms in adolescents and young adults at-risk for an eating disorder. Behav Res Ther. 2020;135:e103731. DOI 10.1016/j.brat.2020.103731.

(38) Karalunas SL, Antovich D, Goh PK, Martel MM, Tipsord J, Nousen EK, et al. Longitudinal network model of the co-development of temperament, executive functioning, and psychopathology symptoms in youth with and without ADHD. Dev Psychopathol. 2021;33(5):1803–20. DOI 10.1017/S0954579421000900.

(39) Betz LT, Penzel N, Kambeitz-Ilankovic L, Rosen M, Chisholm K, Stainton A, et al. General psychopathology links burden of recent life events and psychotic symptoms in a network approach. NPJ Schizophr. 2020;6(1):40. DOI 10.1038/s41537-020-00129-w.

(40) Black L, Panayiotou M, Humphrey N. Internalizing symptoms, well-being, and correlates in adolescence: A multiverse exploration via cross-lagged panel network models. Dev Psychopathol. 2021;1-15. DOI 10.1017/S0954579421000225.

(41) Höltge J, Theron L, Ungar M. A multisystemic perspective on the temporal interplay between adolescent depression and resilience-supporting individual and social resources. J Affect Disord. 2022;297:225-32. DOI 10.1016/j.jad.2021.10.030.

(42) Ebrahimi OV, Burger J, Hoffart A, Johnson SU. Within- and across-day patterns of interplay between depressive symptoms and related psychopathological processes: a dynamic network approach during the COVID-19 pandemic. BMC Med. 2021;19(1):e317. DOI 10.1186/s12916-021-02179-y.

(43) Martín-Brufau R, Suso-Ribera C, Corbalán J. Emotion Network Analysis During COVID-19 Quarantine - A Longitudinal Study. Front Psychol. 2020;11:e559572. DOI 10.3389/fpsyg.2020.559572.

(44) Birk JL, Kronish IM, Moise N, Falzon L, Yoon S, Davidson KW. Depression and multimorbidity: Considering temporal characteristics of the associations between depression and multiple chronic diseases. Health Psychol. 2019;38(9):802-811. DOI 10.1037/hea0000737.

(45) Hernández B, Reilly RB, Kenny RA. Investigation of multimorbidity and prevalent disease combinations in older Irish adults using network analysis and association rules. Sci Rep. 2019;9(1):14567. DOI 10.1038/s41598-019-51135-7.

(46) Blanken TF, Bathelt J, Deserno MK, Voge L, Borsboom D, Douw L. Connecting brain and behavior in clinical neuroscience: A network approach. Neurosci Biobehav Rev. 2021; 130:81-90. DOI 10.1016/j.neubiorev.2021.07.027.

(47) Ramos-Vera C. Las redes de correlación en la investigación de la hipertensión arterial y riesgo vascular. Hiper Ries Vasc. 2021;38(3):156-157. DOI 10.1016/j.hipert.2021.02.001.

(48) Ramos-Vera C, Serpa-Barrientos A. El análisis de redes en la investigación clínica. Rev Fac Med. 2022;70(1), e94407-e94407. DOI 10.15446/revfacmed.v70n1.94407.

(49) de Rooij BH, Oerlemans S, van Deun K, Mols F, de Ligt KM, Husson O, et al. Symptom clusters in 1330 survivors of 7 cancer types from the PROFILES registry: A network analysis. Cancer. 2021. DOI 10.1002/cncr.33852.

(50) Atkinson JA, Song YJC, Merikangas KR, Skinner A, Prodan A, Iorfino F, et al. The Science of Complex Systems Is Needed to Ameliorate the Impacts of COVID-19 on Mental Health. Front Psychiatry. 2020;11:e606035. DOI 10.3389/fpsyt.2020.606035.

(51) Tretter F, Wolkenhauer O, Meyer-Hermann M, et al. The Quest for System-Theoretical Medicine in the COVID-19 Era. Front Med (Lausanne). 2021;8:e640974. DOI 10.3389/fmed.2021.640974.

(52) Jordan DG, Winer ES, Salem T. The current status of temporal network analysis for clinical science: Considerations as the paradigm shifts?. J Clin Psychol. 2020;76(9):1591-612. DOI 10.1002/jclp.22957.

(53) Monteleone AM, Cascino G. A systematic review of network analysis studies in eating disorders: Is time to broaden the core psychopathology to non specific symptoms. Eur Eat Disord Rev. 2021;29(4):531-47. DOI 10.1002/erv.2834.

(54) Foret JT, Dekhtyar M, Cole JH, Gourley DD, Caillaud M, Tanaka H, Haley AP. Network Modeling Sex Differences in Brain Integrity and Metabolic Health. Front Aging Neurosci. 2021;13:e691691. DOI 10.3389/fnagi.2021.691691.

(55) Henneghan A, Wright ML, Bourne G, Sales AC. A Cross-Sectional Exploration of Cytokine-Symptom Networks in Breast Cancer Survivors Using Network Analysis. Can J Nurs Res. 2020;844562120927535. DOI 10.1177/0844562120927535.

(56) Iverson GL. Network Analysis and Precision Rehabilitation for the Post-concussion Syndrome. Front Neurol. 2019;10: e489. DOI 10.3389/fneur.2019.00489.

(57) Ziegelstein RC. Personomics. JAMA Intern Med. 2015;175(6):888-9. DOI 10.1001/jamainternmed.2015.0861.

(58) Ziegelstein RC. Personomics: The Missing Link in the Evolution from Precision Medicine to Personalized Medicine. J Pers Med. 2017;7(4):11. DOI 10.3390/jpm704001.

Descargas

Publicado

2022-01-24

Cómo citar

1.
Ramos-Vera C, García-Ampudia L, Serpa-Barrientos A. Una alternativa de análisis de redes en la exploración de los estados de salud mental, condiciones crónicas y COVID-19. Iatreia [Internet]. 24 de enero de 2022 [citado 25 de junio de 2022];1(1). Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/347261

Número

Sección

Artículos de revisión

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.