Diabetes mellitus y COVID-19, ¿una relación bidireccional?

Autores/as

DOI:

https://doi.org/10.17533/udea.iatreia.189

Palabras clave:

Diabetes Mellitus, Infecciones por Coronavirus, Pandemias

Resumen

La pandemia por COVID-19 ha generado una emergencia de salud pública en todo el mundo. El riesgo, la gravedad y la mortalidad de la enfermedad se han asociado a enfermedades crónicas no transmisibles, como la diabetes mellitus tipo 1 y 2. Se ha planteado la posibilidad de una relación bidireccional entre estas dos entidades y son múltiples las explicaciones fisiopatológicas que las relacionan. Por un lado, la mayoría de los estudios concuerdan en que la disglucemia se asocia a un desenlace negativo de la infección. Además, el COVID-19 puede provocar un empeoramiento del control glucémico y ser un factor desencadenante para el desarrollo de diabetes mellitus tipo 1.

|Resumen
= 348 veces | PDF
= 74 veces| | HTML
= 0 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Susana Gómez, Universidad de Antioquia, Medellín, Colombia

Pediatra, residente Endocrinología Pediátrica, Universidad de Antioquia. Medellín, Colombia.

Nicolás Pineda-Trujillo, Universidad de Antioquia, Medellín, Colombia

Biólogo, MSc en Ciencias Básicas Biomédicas, PhD en Genética. Docente, Grupo Mapeo Genético, Departamento de Pediatría y Puericultura, Facultad de Medicina, Universidad de Antioquia. Medellín, Colombia.

María del Pilar Pereira-Gomez, Universidad de Antioquia, Medellín, Colombia

Pediatra, residente endocrinología pediátrica, Universidad de Antioquia. Medellín, Colombia.

María Paula Sarmiento-Ramón, Endocrinologa pediatrica

Pediatra, residente endocrinología pediátrica, Universidad de Antioquia. Medellín, Colombia.

Citas

(1) Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol [Internet]. 2021;17(1):11–30. DOI 10.1038/s41574-020-00435-4.

(2) Yesudhas D, Srivastava A, Gromiha MM. COVID-19 outbreak: history, mechanism, transmission, structural studies and therapeutics. Infection [Internet]. 2021;49(2):199–213. DOI 10.1007/s15010-020-01516-2.

(3) Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol [Internet]. 2020;251(3):228–48. DOI 10.1002/path.5471.

(4) von der Thüsen J, van der Eerden M. Histopathology and genetic susceptibility in COVID-19 pneumonia. Eur J Clin Invest [Internet]. 2020;50(7):1–7. DOI 10.1111/eci.13259.

(5) Eketunde AO, Mellacheruvu SP, Oreoluwa P. A Review of Postmortem Findings in Patients With COVID-19. Cureus [Internet]. 2020;12(7):5–9. DOI 10.7759/cureus.9438.

(6) Pititto BA, Ferreira SRG. Diabetes and covid-19: more than the sum of two morbidities. Rev Saude Publica [Internet]. 2020;54:54. DOI 10.11606/s1518-8787.2020054002577.

(7) Smith SM, Boppana A, Traupman JA, Unson E, Maddock DA, Chao K, et al. Impaired glucose metabolism in patients with diabetes, prediabetes, and obesity is associated with severe COVID-19. J Med Virol [Internet]. 2021;93(1):409–15. DOI 10.1002/jmv.26227.

(8) Chee YJ, Jia S, Ng SJH, Yeoh E. Diabetic ketoacidosis precipitated by Covid-19 in a patient with newly diagnosed diabetes mellitus. Diabetes Res Clin Pract [Internet]. 2020;164:108166. DOI 10.1016/j.diabres.2020.108166.

(9) Barron E, Bakhai C, Kar P, Weaver A, Bradley D, Ismail H, et al. Associations of type 1 and type 2 diabetes with COVID-19- related mortality in England: a whole-population study. Lancet Diabetes Endocrinol [Internet]. 2020 Oct;8(10):813–22. DOI 10.1016/S2213-8587(20)30272-2.

(10) Wenzhong L, Hualan L. COVID-19: captures iron and generates reactive oxygen species to damage the human immune system. Autoimmunity [Internet]. 2021;54(4):213–24. DOI 10.1080/08916934.2021.1913581.

(11) Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Res Clin Pract [Internet]. 2020;162:108132. DOI 10.1016/j.diabres.2020.108132.

(12) Hodgson K, Morris J, Bridson T, Govan B, Rush C, Ketheesan N. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology [Internet]. 2015;144(2):171–85. DOI 10.1111/imm.12394.

(13) Bansal R, Gubbi S, Muniyappa R. Metabolic syndrome and COVID 19: Endocrine-immune-vascular interactions shapes clinical course. Endocrinology [Internet]. 2020;161(10):1–15. DOI 10.1210/endocr/bqaa112.

(14) Kim JH, Park K, Lee SB, Kang S, Park JS, Ahn CW, et al. Relationship between natural killer cell activity and glucose control in patients with type 2 diabetes and prediabetes. J Diabetes Investig [Internet]. 2019;10(5):1223–8. DOI 10.1111/jdi.13002.

(15) Guzzi PH, Mercatelli D, Ceraolo C, Giorgi FM. Master Regulator Analysis of the SARS-CoV-2/Human Interactome. J Clin Med [Internet]. 2020;9(4):982. DOI 10.3390/jcm9040982.

(16) Zeng Z, Yu H, Chen H, Qi W, Chen L, Chen G, et al. Longitudinal changes of inflammatory parameters and their correlation with disease severity and outcomes in patients with COVID-19 from Wuhan, China. Crit Care [Internet]. 2020;24(1):525. DOI 10.1186/s13054-020-03255-0.

(17) Libby P, Simon DI. Inflammation and thrombosis: The Clot Thickens. Circulation [Internet]. 2001;103(13):1718–20. DOI 10.1161/01.cir.103.13.1718.

(18) Sardu C, D’Onofrio N, Balestrieri ML, Barbieri M, Rizzo MR, Messina V, et al. Outcomes in Patients with Hyperglycemia Affected by COVID-19: Can We Do More on Glycemic Control? Diabetes Care [Internet]. 2020;43(7):1408–15. DOI 10.2337/dc20-0723.

(19) Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res [Internet]. 2020;126(10):1456–74. DOI 10.1161/CIRCRESAHA.120.317015.

(20) Romaní-Pérez M, Outeiriño-Iglesias V, Moya CM, Santisteban P, González-Matías LC, Vigo E, et al. Activation of the GLP-1 receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SP-B in the lungs of type 1 diabetes rats. Endocrinology [Internet]. 2015;156(10):3559–69. DOI 10.1210/en.2014-1685.

(21) Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A [Internet]. 2020;117(21):11727–34. DOI 10.1073/pnas.2003138117.

(22) Fernandez C, Rysä J, Almgren P, Nilsson J, Engström G, Orho-Melander M, et al. Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality. J Intern Med [Internet]. 2018;284(4):377–87. DOI 10.1111/joim.12783.

(23) Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci [Internet]. 2017;18(3):563. DOI 10.3390/ijms18030563.

(24) Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev [Internet]. 2020;36(7):1–9. DOI 10.1002/dmrr.3319.

(25) Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet [Internet]. 2020;395(10229):1033–4. DOI 10.1016/S0140-6736(20)30628-0.

(26) Boddu SK, Aurangabadkar G, Kuchay MS. New onset diabetes, type 1 diabetes and COVID-19 Sirisha. Diabetes Metab Syndr [Internet]. 2020;14(6):2211–7. DOI 10.1016/j.dsx.2020.11.012.

(27) Filippi CM, Von Herrath MG. Viral trigger for type 1 diabetes: Pros and cons. Diabetes [Internet]. 2008;57(11):2863–71. DOI 10.2337/db07-1023.

(28) Coppieters KT, Boettler T, von Herrath M. Virus infections in type 1 diabetes. Cold Spring Harb Perspect Med [Internet]. 2012;2(1):a007682.. DOI 10.1101/cshperspect.a007682.

(29) Palermo NE, Sadhu AR, McDonnell ME. Diabetic Ketoacidosis in COVID-19: Unique Concerns and Considerations. J Clin Endocrinol Metab [Internet]. 2020;105(8):dgaa360. DOI 10.1210/clinem/dgaa360.

(30) Accili D. Can COVID-19 cause diabetes? Nat Metab [Internet]. 2021;3(2):123–5. DOI 10.1038/s42255-020-00339-7.

(31) Gentile S, Strollo F, Mambro A, Ceriello A. COVID-19, ketoacidosis and new-onset diabetes: Are there possible cause and effect relationships among them? Diabetes Obes Metab. 2020;22(12):2507–8. DOI 10.1111/dom.14170.

(32) Puig-Domingo M, Marazuela M, Yildiz BO, Giustina A. COVID-19 and endocrine and metabolic diseases. An updated statement from the European Society of Endocrinology. Endocrine [Internet]. 2021;72(2):301–16. DOI 10.1007/s12020-021-02734-w.

(33) Ceriello A, De Nigris V, Prattichizzo F. Diabetes Obes Metab [Internet]. 2020;22(10):1951–2. DOI 10.1111/dom.14098.

(34) D`Annunzio G, Bassi M, Rose ED, Lezzi M, Minuto N, Calevo MG, et al. Increased Frequency of Diabetic Ketoacidosis: The Link With COVID-19 Pandemic. Front Clin. Diabetes Healthc [Internet]. 2022;3:846827. DOI https://doi.org/10.3389/fcdhc.2022.846827.

(35) Alfayez OM, Aldmasi KS, Alruwais NH, Bin Awad NM, Al Yami MS, Almohammed OA, et al. Incidence of Diabetic Ketoacidosis Among Pediatrics With Type 1 Diabetes Prior to and During COVID-19 Pandemic: A Meta-Analysis of Observational Studies. Front Endocrinol (Lausanne) [Internet]. 2022;13:856958. DOI 10.3389/fendo.2022.856958.

(36) Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17): 6275. DOI 10.3390/ijms21176275.

(37) Rubino F, Amiel SA, Zimmet P, Alberti G, Bornstein S, Eckel RH, et al. New-Onset Diabetes in Covid-19. N Engl J Med [Internet]. 2020;383(8):789–9. DOI 10.1056/NEJMc2018688.

(38) Pal R, Bhadada SK. COVID-19 and diabetes mellitus: An unholy interaction of two pandemics. Diabetes Metab Syndr [Internet]. 2020;14(4):513–7. DOI 10.1016/j.dsx.2020.04.049.

(39) Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J [Internet]. 2020;55(5):2000547. DOI 10.1183/13993003.00547-2020.

(40) Li G, Chen Z, Lv Z, Li H, Chang D, Lu J. Diabetes Mellitus and COVID-19: Associations and Possible Mechanisms. Int J Endocrinol [Internet]. 2021;2021. DOI 10.1155/2021/7394378.

(41) Szymczak-Pajor I, Sliwinska A. Analysis of Association between Vitamin D Deficiency and Insulin Resistance. Nutrients [Internet]. 2019;11(4):794. DOI 10.3390/nu11040794.

(42) Yang JK, Feng Y, Yuan MY, Yuan SY, Fu HJ, Wu BY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med [Internet]. 2006;23(6):623–8. DOI 10.1111/j.1464-5491.2006.01861.x.

(43) Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol [Internet]. 2010;47(3):193–9. DOI 10.1007/s00592-009-0109-4.

(44) Douin DJ, Krause M, Williams C, Tanabe K, Fernandez-Bustamante A, Quaye AN, et al. Corticosteroid Administration and Impaired Glycemic Control in Mechanically Ventilated COVID-19 Patients. Semin Cardiothorac Vasc Anesth [Internet]. 2022;26(1):32–40. DOI 10.1177/10892532211043313.

(45) Pescatore JM, Sarmiento J, Hernandez-Acosta R, Skaathun B, Quesada-Rodriguez N, Rezai K. Glycemic control is associated with lower odds of mortality and successful extubation in severe COVID-19. J Osteopath Med [Internet]. 2022;122(2):111–115. DOI 10.1515/jom-2021-0182.

(46) Cariou B, Pichelin M, Goronflot T, Gonfroy C, Marre M, Raffaitin-Cardin C, et al. Phenotypic characteristics and prognosis of newly diagnosed diabetes in hospitalized patients with COVID-19: Results from the CORONADO study. Diabetes Res Clin Pract [Internet]. 2021;175:1086–95. DOI 10.1016/j.diabres.2021.108695.

(47) Zhang Y, Li H, Zhang J, Cao Y, Zhao X, Yu N, et al. The clinical characteristics and outcomes of patients with diabetes and secondary hyperglycemia with coronavirus disease 2019: A single-centre, retrospective, observational study in Wuhan. Diabetes Obes Metab [Internet]. 2020;22(8):1443–54. DOI 10.1111/dom.14086.

(48) Li H, Tian S, Chen T, Cui Z, Shi N, Zhong X, et al. Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19. Diabetes Obes Metab [Internet]. 2020;22(10):1897–906. DOI 10.1111/dom.14099.

(49) Landstra CP, de Koning EJP. COVID-19 and Diabetes: Understanding the Interrelationship and Risks for a Severe Course. Front Endocrinol (Lausanne) [Internet]. 2021 Jun;12:649525. DOI 10.3389/fendo.2021.649525.

(50) Zanardo V, Tortora D, Sandri A, Severino L, Mesirca P, Straface G. COVID-19 pandemic: Impact on gestational diabetes mellitus prevalence. Diabetes Res Clin Pract [Internet]. 2022 Jan;183:109149. DOI 10.1016/J.DIABRES.2021.109149.

(51) Codina M, Corcoy R, Goya M, et al. Actualización urgente: alternativa temporal para el diagnóstico de hiper-glucemia gestacional y el seguimiento de estas mujeres y aquellas con diabetes pregestacional durante la pandemia COVID-19. Consenso del Grupo Español de Diabetes y Embarazo (GEDE) de la Sociedad Española de Diabetes (SED) y la Sociedad Española de Ginecología y Obstetricia (SEGO). Endocrinol Diabetes Nutr (Engl Ed) [Internet]. 2020;67(8):545-552. DOI 10.1016/j.endinu.2020.05.002.

(52) La Verde M, Torella M, Riemma G, Narciso G, Iavarone I, Gliubizzi L, et al. Incidence of gestational diabetes mellitus before and after the Covid-19 lockdown: A retrospective cohort study. J Obstet Gynaecol Res. 2022;48(5):1126-1131. DOI 10.1111/jog.15205.

(53) Díaz-Castrillón FJ, Toro-Montoya AI. SARS-CoV-2/COVID-19: el virus, la enfermedad y la pandemia. Med Lab [Internet]. 2020;24(3):183–205. DOI 10.36384/01232576.268.

(54) Arriero CCJ, Rueda SVA. La enzima convertidora de angiotensina 2 en hipertensión, diabetes y obesidad, y su participación en la vulnerabilidad ante el virus SARS-COV-2. Rev Educ Bioquímica [Internet]. 2020;39(4):121–30. Disponible en: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=98346

(55) Montaño LM, Flores-soto E. COVID-19 y su asociación con los inhibidores de la enzima convertidora de angiotensina y los antagonistas de los receptores para angiotensina II. Rev la Fac Med [Internet]. 2020;63(4):30–4. DOI 10.22201/fm.24484865e.2020.63.4.05.

(56) Muniangi-Muhitu H, Akalestou E, Salem V, Misra S, Oliver NS, Rutter GA. Covid-19 and Diabetes: A Complex Bidirectional Relationship. Front Endocrinol (Lausanne) [Internet]. 2020;11:1–10. DOI 10.3389/fendo.2020.582936.

(57) Abdi A, Jalilian M, Sarbarzeh PA, Vlaisavljevic Z. Diabetes and COVID-19: A systematic review on the current evidences. Diabetes Res Clin Pract [Internet]. 2020;166(6):108347. DOI 10.1016/j.diabres.2020.108347.

Descargas

Publicado

12-09-2022

Cómo citar

1.
Gómez S, Pineda-Trujillo N, Pereira-Gomez M del P, Sarmiento-Ramón MP. Diabetes mellitus y COVID-19, ¿una relación bidireccional?. Iatreia [Internet]. 12 de septiembre de 2022 [citado 8 de febrero de 2025];36(2). Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/348143

Número

Sección

Artículos de revisión

Artículos similares

También puede {advancedSearchLink} para este artículo.