Deficiencia de hierro y su influencia sobre la memoria y el aprendizaje en estudios preclínicos y clínicos

Autores/as

DOI:

https://doi.org/10.17533/udea.iatreia.327

Palabras clave:

Anemia, Aprendizaje, Deficiencias de Hierro, Memoria

Resumen

Introducción: la deficiencia de hierro es un problema de salud pública que afecta al 25 % de la población mundial, siendo las mujeres embarazadas y los niños los grupos más vulnerables. Recientemente, se está logrando comprender el rol fundamental que cumple el hierro para las funciones de las células gliales y las neuronas, las cuales están implicadas en la memoria y el aprendizaje.

Objetivo: explorar la evidencia más actualizada que vincula la DH con la memoria y el aprendizaje dependiente del hipocampo tanto en estudios preclínicos y clínicos

Métodos: revisión narrativa que se basó en una búsqueda de artículos en PubMed, Scopus, Scielo y Google, siguiendo las pautas de la guía SANRA para revisiones narrativas.

Resultados: en los estudios preclínicos y clínicos analizados se ha encontrado que la deficiencia de hierro se asocia con alteraciones dentro del sistema nervioso, siendo la etapa fetal/neonatal y la niñez donde se ha encontrado que afecta, principalmente, el aprendizaje, la memoria, las habilidades motoras gruesas y finas, el temperamento y el binomio madre-hijo.

Conclusiones: la deficiencia de hierro afecta negativamente la memoria y el aprendizaje, alterando la mielinización, el metabolismo energético y la señalización neuronal en el hipocampo tanto a nivel preclínico como clínico.

|Resumen
= 83 veces | PDF
= 57 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Elías Aguirre-Siancas, Universidad Nacional Mayor de San Marcos, Lima, Perú

Docente e Investigador. Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú.

Oreste Basombrío-Contreras, Hospital Regional de Huacho, Huacho, Perú

Médico pediatra. Hospital Regional de Huacho, Huacho, Perú.

Josué Matuda-Silvestre, Universidad Nacional Mayor de San Marcos, Lima, Perú

Docente e Investigador. Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú.

Ronald de la Cruz-Rodriguez, Universidad Nacional Mayor de San Marcos, Lima, Perú

Bachiller en odontología. Facultad de Odontología, Universidad Nacional Mayor de San Marcos, Lima, Perú.

Nelly Lam-Figueroa, Universidad Nacional Mayor de San Marcos. Lima, Perú.

Docente e Investigador. Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú.

Citas

(1) Alvarado CS, Yanac-Avila R, Marron-Veria E, Málaga-Zenteno J, Adamkiewicz TV. Avances en el diagnóstico y tratamiento de deficiencia de hierro y anemia ferropénica. An Fac med [Internet]. 2022;83(1):65–69. Disponible en: https://doi.org/10.15381/anales.v83i1.21721

(2) Reyes-Narváez SE, Contreras-Contreras AM, Oyola-Canto MS. Anemia y desnutrición infantil en zonas rurales: impacto de una intervención integral a nivel comunitario. Rev. investig. altoandin. [Internet]. 2019;21(3):205-214. Disponible en: https://doi.org/10.18271/ria.2019.478

(3) Alem AZ, Efendi F, McKenna L, Felipe-Dimog EB, Chilot D, Tonapa SI, et al. Prevalence and factors associated with anemia in women of reproductive age across low- and middle-income countries based on national data. Sci Rep [Internet]. 2023;13(1):20335. Disponible en: https://doi.org/10.1038/s41598-023-46739-z

(4) Organización Mundial de la Salud. Concentraciones de hemoglobina para diagnosticar la anemia y evaluar su gravedad [Internet]. Ginebra: Organización Mundial de la Salud; 2011. [Consultado 22 dic 2023]. Disponible en: https://www.who.int/es/publications/i/item/WHO-NMH-NHD-MNM-11.1

(5) Cheli VT, Correale J, Paez PM, Pasquini JM. Iron Metabolism in Oligodendrocytes and Astrocytes, Implications for Myelination and Remyelination. ASN Neuro [Internet]. 2020;12:1759091420962681. Disponible en: https://doi.org/10.1177/1759091420962681

(6) Berthou C, Iliou JP, Barba D. Iron, neuro-bioavailability and depression. eJHaem [Internet]. 2022;3(1):263–275. Disponible en: https://doi.org/10.1002/jha2.321

(7) Zhang H, He L, Li S, Zhai M, Ma S, Jin G, et al. Cerebral iron deficiency may induce depression through downregulation of the hippocampal glucocorticoid-glucocorticoid receptor signaling pathway. J Affect Disord [Internet]. 2023;332:125–135. Disponible en: https://doi.org/10.1016/j.jad.2023.03.085

(8) Lazarowski AJ, Vitale AA, Auzmendi JA, Pomilio AB. Hierro: desde la homeostasis a la muerte por ferroptosis. Acta bioquím clín latinoam [Internet]. 2022;56(4):490-513. Disponible en: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325-29572022000400490&lng=es&nrm=iso

(9) Bani-Ahmad MA, Obeidat MM, Ahmad MH, Barqawi M. The modulation of plasma levels of dopamine, serotonin, and brain-derived neurotrophic factor in response to variation in iron availability. Acta Biomed [Internet]. 2022;93(6):e2022293. Disponible en: https://doi.org/10.23750/abm.v93i6.13276

(10) Chang S, Wang P, Han Y, Ma Q, Liu Z, Zhong S, et al. Ferrodifferentiation regulates neurodevelopment via ROS generation. Sci. China Life Sci [Internet]. 2022;66(8):1841–1857. Disponible en: https://doi.org/10.1007/s11427-022-2297-y

(11) Geng F, Mai X, Zhan J, Xu L, Georgieff M, Shao J, et al. Timing of iron deficiency and recognition memory in infancy. Nutr Neurosci [Internet]. 2022;25(1):1–10. https://doi.org/10.1080/1028415X.2019.1704991

(12) Porras CA, Rouault TA. Iron Homeostasis in the CNS: An Overview of the Pathological Consequences of Iron Metabolism Disruption. Int. J. Mol. Sci. [Internet]. 2022;23(9):4490. https://doi.org/10.3390/ijms23094490

(13) Spencer RMC, Riggins T. Contributions of memory and brain development to the bioregulation of naps and nap transitions in early childhood. Proc. Natl. Acad. Sci. U.S.A[Internet]. 2022;119(44):e2123415119. https://doi.org/10.1073/pnas.2123415119

(14) Isasi E, Figares M, Abudara V, Olivera-Bravo S. Gestational and Lactational Iron Deficiency Anemia Impairs Myelination and the Neurovascular Unit in Infant Rats. Mol Neurobiol [Internet]. 2022;59(6):3738–3754. https://doi.org/10.1007/s12035-022-02798-3

(15) Dimas-Benedicto C, Albasanz JL, Bermejo LM, Castro-Vázquez L, Sánchez-Melgar A, Martín M, et al. Impact of Iron Intake and Reserves on Cognitive Function in Young University Students. Nutrients [Internet]. 2024;16(16):2808. https://doi.org/10.3390/nu16162808

(16) German KR, Juul SE. Iron and Neurodevelopment in Preterm Infants: A Narrative Review. Nutrients [Internet]. 2021;13(11):3737. https://doi.org/10.3390/nu13113737

(17) Baethge C, Goldbeck-Wood S, Mertens S. SANRA—a scale for the quality assessment of narrative review articles. Res Integr Peer Rev [Internet]. 2019;4(5):1-7. https://doi.org/10.1186/s41073-019-0064-8

(18) Montoro-Huguet MA, Santolaria-Piedrafita S, Cañamares-Orbis P, García-Erce JA. Iron Deficiency in Celiac Disease: Prevalence, Health Impact, and Clinical Management. Nutrients [Internet]. 2021;13(10):3437. https://doi.org/10.3390/nu13103437

(19) Cronin SJF, Woolf CJ, Weiss G, Penninger JM. The Role of Iron Regulation in Immunometabolism and Immune-Related Disease. Front Mol Biosci [Internet]. 2019;6:116. https://doi.org/10.3389/fmolb.2019.00116

(20) Pipoyan D, Stepanyan S, Beglaryan M, Mantovani A. Assessment of Heme and Non-Heme Iron Intake and Its Dietary Sources among Adults in Armenia. Nutrients [Internet]. 2023;15(7):1643. https://doi.org/10.3390/nu15071643

(21) Ems T, St Lucia K, Huecker MR. Biochemistry, Iron Absorption [Internet]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024. Available from: http://www.ncbi.nlm.nih.gov/books/NBK448204/

(22) Rolić T, Yazdani M, Mandić S, Distante S. Iron Metabolism, Calcium, Magnesium and Trace Elements: A Review. Biol Trace Elem Res [Internet]. 2024. https://doi.org/10.1007/s12011-024-04289-z

(23) Kumar A, Sharma E, Marley A, Samaan MA, Brookes MJ. Iron deficiency anaemia: pathophysiology, assessment, practical management. BMJ Open Gastroenterol [Internet]. 2022;9(1):e000759. https://doi.org/10.1136/bmjgast-2021-000759

(24) Wincup C, Sawford N, Rahman A. Pathological mechanisms of abnormal iron metabolism and mitochondrial dysfunction in systemic lupus erythematosus. Expert Rev Clin Immunol [Internet]. 2021;17(9):957–967. https://doi.org/10.1080/1744666X.2021.1953981

(25) Wang S, He X, Wu Q, Jiang L, Chen L, Yu Y, et al. Transferrin receptor 1-mediated iron uptake plays an essential role in hematopoiesis. Haematologica [Internet]. 2020;105(8):2071–2082. https://doi.org/10.3324/haematol.2019.224899

(26) Nemeth E, Ganz T. Hepcidin and Iron in Health and Disease. Annu Rev Med [Internet]. 2023;74:261–277. https://doi.org/10.1146/annurev-med-043021-032816

(27) Canny SP, Orozco SL, Thulin NK, Hamerman JA. Immune Mechanisms in Inflammatory Anemia. Annu Rev Immunol [Internet]. 2023;41:405–429. https://doi.org/10.1146/annurev-immunol-101320-125839

(28) Cazzola M. Ineffective erythropoiesis and its treatment. Blood [Internet]. 2022;139(16):2460–2470. https://doi.org/10.1182/blood.2021011045

(29) Kumar SB, Arnipalli SR, Mehta P, Carrau S, Ziouzenkova O. Iron Deficiency Anemia: Efficacy and Limitations of Nutritional and Comprehensive Mitigation Strategies. Nutrients [Internet]. 2022;14(14):2976. https://doi.org/10.3390/nu14142976

(30) You L, Yu PP, Dong T, Guo W, Chang S, Zheng B, et al. Astrocyte-derived hepcidin controls iron traffic at the blood-brain-barrier via regulating ferroportin 1 of microvascular endothelial cells. Cell Death Dis [Internet]. 2022;13(8):667. https://doi.org/10.1038/s41419-022-05043-w

(31) Nielsen SSE, Holst MR, Langthaler K, Christensen SC, Bruun EH, Brodin B, et al. Apicobasal transferrin receptor localization and trafficking in brain capillary endothelial cells. Fluids Barriers CNS [Internet]. 2023;20(1):2. https://doi.org/10.1186/s12987-022-00404-1

(32) Ward RJ, Dexter DT, Crichton RR. Iron, Neuroinflammation and Neurodegeneration. Int. J. Mol. Sci [Internet]. 2022;23(13):7267. https://doi.org/10.3390/ijms23137267

(33) Nadimpalli HP, Katsioudi G, Arpa ES, Chikhaoui L, Arpat AB, Liechti A, et al. Diurnal control of iron responsive element containing mRNAs through iron regulatory proteins IRP1 and IRP2 is mediated by feeding rhythms. Genome Biol [Internet]. 2024;25(1):128. https://doi.org/10.1186/s13059-024-03270-2

(34) Sridhar S, Khamaj A, Asthana MK. Cognitive neuroscience perspective on memory: overview and summary. Front. Hum. Neurosci [Internet]. 2023;17:1217093. https://doi.org/10.3389/fnhum.2023.1217093

(35) Camacho-Ugarte V, Bastida-Codina A, Zarate SG. Estudio anatómico del hipocampo como una de las regiones de neurogénesis más relevante. Rev Cient Cienc Méd [Internet]. 2020;23(2):221–230. Disponible en: http://www.scielo.org.bo/scielo.php?script=sci_abstract&pid=S1817-74332020000200013&lng=es&nrm=iso&tlng=es

(36) Liu SX, Barks AK, Lunos S, Gewirtz JC, Georgieff MK, Tran PV. Prenatal Iron Deficiency and Choline Supplementation Interact to Epigenetically Regulate Jarid1b and Bdnf in the Rat Hippocampus into Adulthood. Nutrients [Internet]. 2021;13(12):4527. https://doi.org/10.3390/nu13124527

(37) Pino JMV, Nishiduka ES, da Luz MHM, Silva VF, Antunes HKM, Tashima AK, et al. Iron-deficient diet induces distinct protein profile related to energy metabolism in the striatum and hippocampus of adult rats. Nutr Neurosci [Internet]. 2022;25(2):207–218. https://doi.org/10.1080/1028415X.2020.1740862

(38) Kealy J, Murray C, Griffin EW, Lopez-Rodriguez AB, Healy D, Tortorelli LS, et al. Acute Inflammation Alters Brain Energy Metabolism in Mice and Humans: Role in Suppressed Spontaneous Activity, Impaired Cognition, and Delirium. J Neurosci [Internet]. 2020;40(29):5681–5696. https://doi.org/10.1523/JNEUROSCI.2876-19.2020

(39) Lien YC, Condon DE, Georgieff MK, Simmons RA, Tran PV. Dysregulation of Neuronal Genes by Fetal-Neonatal Iron Deficiency Anemia Is Associated with Altered DNA Methylation in the Rat Hippocampus. Nutrients [Internet]. 2019;11(5):1191. https://doi.org/10.3390/nu11051191

(40) Antonides A, Schoonderwoerd AC, Scholz G, Berg BM, Nordquist RE, van der Staay FJ. Pre-weaning dietary iron deficiency impairs spatial learning and memory in the cognitive holeboard task in piglets. Front. Behav. Neurosci [Internet]. 2015;9:291. https://doi.org/10.3389/fnbeh.2015.00291

(41) Tran PV, Dakoji S, Reise KH, Storey KK, Georgieff MK. Fetal iron deficiency alters the proteome of adult rat hippocampal synaptosomes. Am J Physiol Regul Integr Comp Physiol [Internet]. 2013;305(11):R1297–R1306. https://doi.org/10.1152/ajpregu.00292.2013

(42) Shah HE, Bhawnani N, Ethirajulu A, Alkasabera A, Onyali CB, Anim-Koranteng C, et al. Iron Deficiency-Induced Changes in the Hippocampus, Corpus Striatum, and Monoamines Levels That Lead to Anxiety, Depression, Sleep Disorders, and Psychotic Disorders. Cureus [Internet]. 2021;13(9):e18138. https://doi.org/10.7759/cureus.18138

(43) Geng F, Mai X, Zhan J, Xu L, Zhao Z, Georgieff M, et al. Impact of Fetal-Neonatal Iron Deficiency on Recognition Memory at 2 Months of Age. J Pediatr [Internet]. 2015;167(6):1226–1232. https://doi.org/10.1016/j.jpeds.2015.08.035

(44) Basu S, Kumar D, Anupurba S, Verma A, Kumar A. Effect of maternal iron deficiency anemia on fetal neural development. J Perinatol [Internet]. 2018;38(3):233–239. https://doi.org/10.1038/s41372-017-0023-5

(45) Yusrawati, Rina G, Indrawati LN, Machmud R. Differences in brain-derived neurotrophic factor between neonates born to mothers with normal and low ferritin. Asia Pac J Clin Nutr [Internet]. 2018;27(2):389–392. https://doi.org/10.6133/apjcn.042017.18

(46) Braschi C, Capsoni S, Narducci R, Poli A, Sansevero G, Brandi R, et al. Intranasal delivery of BDNF rescues memory deficits in AD11 mice and reduces brain microgliosis. Aging Clin Exp Res [Internet]. 2021;33(5):1223–1238. https://doi.org/10.1007/s40520-020-01646-5

(47) Samson KLI, Fischer JAJ, Roche ML. Iron Status, Anemia, and Iron Interventions and Their Associations with Cognitive and Academic Performance in Adolescents: A Systematic Review. Nutrients [Internet]. 2022;14(1):224. https://doi.org/10.3390/nu14010224

(48) East P, Doom JR, Blanco E, Burrows R, Lozoff B, Gahagan S. Iron deficiency in infancy and neurocognitive and educational outcomes in young adulthood. Developmental Psychology [Internet]. 2021;57(6):962–975. https://psycnet.apa.org/doi/10.1037/dev0001030

(49) Algarín C, Nelson CA, Peirano P, Westerlund A, Reyes S, Lozoff B. Iron-deficiency anemia in infancy and poorer cognitive inhibitory control at age 10 years. Dev Med Child Neurol [Internet]. 2013;55(5):453–458. https://doi.org/10.1111/dmcn.12118

(50) Barks AK, Liu SX, Georgieff MK, Hallstrom TC, Tran PV. Early-Life Iron Deficiency Anemia Programs the Hippocampal Epigenomic Landscape. Nutrients [Internet]. 2021;13(11):3857. https://doi.org/10.3390/nu13113857

(51) Bastian TW, Rao R, Tran PV, Georgieff MK. The Effects of Early-Life Iron Deficiency on Brain Energy Metabolism. Neurosci Insights [Internet]. 2020;15:2633105520935104. https://doi.org/10.1177/2633105520935104

(52) Kinyoki D, Osgood-Zimmerman AE, Bhattacharjee NV, Kassebaum NJ, Hay SI. Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018. Nat Med [Internet]. 2021;27(10):1761–1782. https://doi.org/10.1038/s41591-021-01498-0

(53) Organización Mundial de la Salud. Anemia [Internet]. 2023. [Consultado 28 Sep 2024]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/anaemia

(54) FAO, FIDA, OPS, PMA, UNICEF. Panorama regional de la seguridad alimentaria y la nutrición - América Latina y el Caribe 2023: Estadísticas y tendencias [Internet]. 2023. [Consultado 27 Sep 2024]. Disponible en: https://www.fao.org/3/cc8514es/online/sofi-statistics-rlc-2023/aneamia-among-women.html

Descargas

Publicado

11-03-2025

Cómo citar

1.
Aguirre-Siancas E, Basombrío-Contreras O, Matuda-Silvestre J, de la Cruz-Rodriguez R, Lam-Figueroa N. Deficiencia de hierro y su influencia sobre la memoria y el aprendizaje en estudios preclínicos y clínicos. Iatreia [Internet]. 11 de marzo de 2025 [citado 28 de marzo de 2025];1(1). Disponible en: https://revistas.udea.edu.co/index.php/iatreia/article/view/356073

Número

Sección

Artículos de revisión