Validación de nuevos inhibidores de los transportadores de membrana de la familia MmpL de Mycobacterium tuberculosis como agentes antimicrobianos con potencial terapéutico

Authors

DOI:

https://doi.org/10.17533/udea.iatreia.345540

Keywords:

Mycobacterium tuberculosis, MmpL, cell envelope, inhibitors tuberculosis

Abstract

La tuberculosis es un enfermedad infectocontagiosa que es transmitida principalmente por aerosoles en los que va contenido el Mycobacterium tuberculosis (Mtb). Este patógeno ha provocado a nivel mundial 10 millones de contagios y 1,5 millones de muertes en el 2019. En Colombia, hay una incidencia mayor que en el año 2018 con 27.31 casos por cada 100.000 habitantes en el 2019. Para tratar a los pacientes contagiados se ha propuesto un régimen de antibióticos de primera línea como la rifampicina, la isoniacida, etambutol y la pirazinamida por variados períodos de tiempo y con una efectividad de control del 85% de las personas infectadas. Pero se ha encontrado que se ha aumentado las formas resistentes a los antibióticos usados en la primera línea por lo cual se ha propuesto desarrollar nuevos agentes terapéuticos.

|Abstract
= 247 veces | PDF (ESPAÑOL (ESPAÑA))
= 142 veces|

Downloads

Download data is not yet available.

Author Biographies

Jeimmy K. Molina-Barrera, Universidad de Antioquia

Grupo de Inmunología Celular e Inmunogénica, Corporación Académica Ciencias Básicas Biomédicas.

Mauricio Rojas-López, Universidad de Antioquia

Profesor, Instituto de Investigaciones Médicas. Coordinador del Grupo de Inmunología Celular e Inmunogenética (GICIG). Coordinador, Unidad de Citometría SIU Lab 420.

References

(1) Organization WH. Global tuberculosis report 2019. [Internet]. Geneva: World Health Organization; 2019. Available from: http://files/512/9789241565714-eng.pdf

(2) Instituto Nacional de Salud. Semana epidemiológica 11 “Es hora de actuar Pon fin a la Tuberculosis” [Internet]. 2019 [cited 2020 Feb 4]. Available from: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2019 Boletín epidemiológico semana 11.pdf

(3) Instituto Nacional de Salud. Semana epidemiológica 12 “Unidos para poner fin a la Tuberculosis.” 2020.

(4) Organización Mundial de la Salud. OMS | Estrategia de la OMS para poner fin a la tuberculosis de aquí a 2035. WHO [Internet]. 2020 [cited 2020 Nov 2]; Available from: http://www.who.int/tb/strategy/es/

(5) Organización Mundial de la Salud. GLOBAL TUBERCULOSIS REPORT 2020 [Internet]. 2020 [cited 2020 Nov 2]. Available from: http://apps.who.int/bookorders.

(6) Bailo R, Bhatt A, Aínsa JA. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development. Biochem Pharmacol. 2015;96(3):159–67.

(7) Melly G, Purdy G. MmpL Proteins in Physiology and Pathogenesis of M. tuberculosis. Microorganisms [Internet]. 2019 Feb 4;7(3):70. Available from: https://www.mdpi.com/2076-2607/7/3/70

(8) Viljoen A, Dubois V, Girard-Misguich F, Blaise M, Herrmann JL, Kremer L. The diverse family of MmpL transporters in mycobacteria: from regulation to antimicrobial developments. Mol Microbiol. 2017;104(6):889–904.

(9) Wright CC, Hsu FF, Arnett E, Dunaj JL, Davidson PM, Pacheco SA, et al. The Mycobacterium tuberculosis MmpL11 Cell Wall Lipid Transporter Is Important for Biofilm Formation, Intracellular Growth, and Nonreplicating Persistence. Infect Immun [Internet]. 2017 Feb 23;85(8). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520431/

(10) Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem [Internet]. 1995;64:29–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7574484

(11) Keeley J. Se entienden nuevos detalles de la infección tuberculosa. HHMI.org [Internet]. 2020 Mar 17; vailable from: https://www.hhmi.org/news/se-entiendennuevos-detalles-de-la-infecci-n-tuberculosa

(12) Wells RM, Jones CM, Xi Z, Speer A, Danilchanka O, Doornbos KS, et al. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog [Internet]. 2013;9(1):e1003120. Available from: http://files/270/Wells et al. - 2013 - Discovery of a siderophore export system essential.pdf

(13) Ma S, Huang Y, Xie F, Gong Z, Zhang Y, Stojkoska A, et al. Transport mechanism of Mycobacterium tuberculosis MmpL/S family proteins and implications in pharmaceutical targeting. Biol Chem [Internet]. 2020 Jun 9;401(3):331–48. Available from: https://www.degruyter.com/view/journals/bchm/401/3/article-p331.xml

(14) Chim N, Torres R, Liu Y, Capri J, Batot G, Whitelegge JP, et al. The Structure and Interactions of Periplasmic Domains of Crucial MmpL Membrane Proteins from Mycobacterium tuberculosis. Chem Biol. 2015;22(8):1098–107.

(15) Székely R, Cole ST. Mechanistic insight into mycobacterial MmpL protein function. Mol Microbiol. 2016;99(5):831–4.

(16) Xu Z, Meshcheryakov VA, Poce G, Chng S-S. MmpL3 is the flippase for mycolic acids in mycobacteria. Proc Natl Acad Sci [Internet]. 2017 May 23;114(30):7993–8. Available from: https://www.pnas.org/content/114/30/7993

(17) Pacheco SA, Hsu F-F, Powers KM, Purdy GE. MmpL11 Protein Transports Mycolic Acid-containing Lipids to the Mycobacterial Cell Wall and Contributes to Biofilm Formation in Mycobacterium smegmatis. J Biol Chem [Internet]. 2013 Feb 24;288(33):24213–22. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745366/

(18) Grzegorzewicz AE, Pham H, Gundi VAKB, Scherman MS, North EJ, Hess T, et al. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol [Internet]. 2012 Apr 20;8(4):334–41. Available from: https://www.nature.com/articles/nchembio.794

(19) Varela C, Rittmann D, Singh A, Krumbach K, Bhatt K, Eggeling L, et al. MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria. Chem Biol [Internet]. 2012;19(4):498–506. Available from: http://dx.doi.org/10.1016/j.chembiol.2012.03.006

(20) Patin EC, Geffken AC, Willcocks S, Leschczyk C, Haas A, Nimmerjahn F, et al. Trehalose dimycolate interfereswith FcγRmediated phagosome maturation through Mincle, SHP-1 and FcγRIIB signalling. PLoS One. 2017;12(4):1–11.

(21) Welsh KJ, Hunter RL, Actor JK. Trehalose 6,6′-dimycolate – A coat to regulate tuberculosis immunopathogenesis. Tuberculosis [Internet]. 2013 May 23;93:S3–9. Available from: http://www.sciencedirect.com/science/article/pii/S1472979213700039

(22) Hunter RL, Olsen MR, Jagannath C, Actor JK. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. AnnClin Lab Sci. 2006;36(4):371–86.

(23) Li W, Obregón-Henao A, Wallach JB, North EJ, Lee RE, Gonzalez-Juarrero M, et al. Therapeutic potential of the Mycobacterium tuberculosis mycolic acid transporter, MmpL3. Antimicrob Agents Chemother. 2016;60(9):5198–207.

(24) Degiacomi G, Benjak A, Madacki J, Boldrin F, Provvedi R, Palù G, et al. Essentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression. Sci Rep [Internet]. 2017;7:43495. Available from: http://files/590/Degiacomi et al. - 2017 - Essentiality of mmpL3 and impact of its silencing.pdf

(25) Baba T, Natsuhara Y, Kaneda K, Yano I. Granuloma formation activity and mycolic acid composition ofmycobacterial cord factor. Cell Mol Life Sci C [Internet]. 1997 May 23;53(3):227–32. Available from: https://doi.org/10.1007/PL00000595

(26) Hamasaki N, Isowa K-I, Kamada K, Terano Y, Matsumoto T, Arakawa T, et al. In Vivo Administration of Mycobacterial Cord Factor (Trehalose 6,6′-Dimycolate) Can Induce Lung and Liver Granulomas and Thymic Atrophy in Rabbits. Infect Immun [Internet]. 2000 May 23;68(6):3704–9. Available from: https://iai.asm.org/content/68/6/3704

(27) Hunter RL, Olsen M, Jagannath C, Actor JK. Trehalose 6,6′-Dimycolate and Lipid in the Pathogenesis of Caseating Granulomas of Tuberculosis in Mice. Am J Pathol [Internet]. 2006 May 23;168(4):1249–61. Availablefrom: http://www.sciencedirect.com/science/article/pii/S0002944010627022

(28) Domenech P, Reed MB, Barry CE. Contribution of the Mycobacterium tuberculosis MmpL Protein Family to Virulence and Drug Resistance. Infect Immun [Internet]. 2005 Feb 13;73(6):3492–501. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1111821/

(29) Barrera LF, Kramnik I, Skamene E, Radzioch D. Nitrite production by macrophages derived from BCG-esistant and -susceptible congenic mouse strains in response to IFN-γ and infection with BCG. Immunology [Internet]. 1994 [cited 2020 Nov 2];82(3):457–64. Available from: /pmc/articles/PMC1414881/?report=abstract

(30) Guven H, Oto O, Acikel U, Gidener S, Apaydin S, Silistrel E, et al. A Comparison of the Serum Concentration Time-Curves of Amikacin-Administered Patients before and after Open Heart Surgery. J Int Med Res [Internet].1994 Jan 25 [cited 2020 Nov 2];22(1):33–9. Available from: http://journals.sagepub.com/doi/10.1177/030006059402200104

Published

2021-04-29

How to Cite

1.
Molina-Barrera JK, Rojas-López M. Validación de nuevos inhibidores de los transportadores de membrana de la familia MmpL de Mycobacterium tuberculosis como agentes antimicrobianos con potencial terapéutico. Iatreia [Internet]. 2021 Apr. 29 [cited 2025 Feb. 2];34(1-S):S39-S41. Available from: https://revistas.udea.edu.co/index.php/iatreia/article/view/345540