Clinical Applications of the respiratory equation of motion to guide decision-making in the patient under invasive mechanical ventilation
DOI:
https://doi.org/10.17533/udea.iatreia.179Keywords:
Respiratory Distress Syndrome, Adult, Airway Resistance, Critical Care, Chronic Obstructive Pulmonary Disease, Pulmonary Ventilation, Respiratory MechanicsAbstract
Introduction: Mechanical ventilation is a common practice in intensive care units and anesthesiology with both therapeutic and potentially harmful implications for the respiratory system and distant organs, that is why it is of utmost importance to continually monitor ventilation parameters.
Objective: To describe the equation of motion of the respiratory system and its clinical applications in the patient under invasive mechanical ventilation.
Main: The equation of motion of the respiratory system integrates the dynamic forces generated by the ventilator with the intrinsic properties of the lung and chest wall. It expresses the pressure in the respiratory system in relation to volume, elastance, resistance, air flow and pressures generated by the ventilator and the patient. Elevated pressures in the respiratory system during mechanical ventilation are associated with greater mortality, that is why the identification of the components responsible for elevation of pressures through the equation of motion of the respiratory system allows to modify ventilator programmed parameters to maintain a protective ventilation.
Conclusion: Decision-making based on the equation of motion of the respiratory system allows to modify ventilatory parameters according to the characteristics and diseases of the patient under mechanical ventilation.
Downloads
References
(1) Hess DR. Respiratory Mechanics in Mechanically Ventilated Patients. Respir Care [Internet]. 2014;59(11):1773–94. DOI 10.4187/respcare.03410.
(2) Rodarte JR, Rehder K. Dynamics of Respiration. En: Comprehensive Physiology. Wiley; 2011. p. 131–44.
(3) Vandenbunder B, Ehrmann S, Piagnerelli M, Sauneuf B, Serck N, Soumagne T, et al. Static compliance of the respiratory system in COVID-19 related ARDS: an international multicenter study. Crit Care [Internet]. 2021;25(1):1–11. DOI 10.1186/s13054-020-03433-0.
(4) Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301–8. DOI 10.1056/NEJM200005043421801.
(5) Hickling KG, Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: A prospective study. Crit Care Med [Internet]. 1994 Oct;22(10):1568–78 DOI 10.1097/00003246-199422100-00011.
(6) Hodgson CL, Cooper DJ, Arabi Y, King V, Bersten A, Bihari S, et al. Maximal Recruitment Open Lung Ventilation in Acute Respiratory Distress Syndrome (PHARLAP). A Phase II, Multicenter Randomized Controlled Clinical Trial. Am J Respir Crit Care Med [Internet]. 2019 Dec 1;200(11):1363–72. DOI 10.1164/rccm.201901-0109OC.
(7) Koppurapu VS, Puliaiev M, Doerschug KC, Schmidt GA. Ventilated Patients With COVID-19 Show Airflow Obstruction. J Intensive Care Med [Internet]. 2021;36(6):696–703. DOI 10.1177/08850666211000601.
(8) Reddy RM, Guntupalli KK. Review of ventilatory techniques to optimize mechanical ventilation in acute exacerbation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis [Internet]. 2007;2(4):441–52. PMID: 18268918; PMCID: PMC2699957.
(9) García-Prieto E, Amado-Rodríguez L, Albaiceta GM. Monitorization of respiratory mechanics in the ventilated patient. Med Intensiva (Engl Ed) [Internet]. 2014;38(1):49–55. DOI 10.1016/j.medine.2013.09.001.
(10) Mortola JP, Saetta M, Fox G, Smith B, Weeks S. Mechanical aspects of chest wall distortion. J Appl Physiol (1985) [Internet]. 1985 Aug 1;59(2):295–304. DOI 10.1152/jappl.1985.59.2.295.
(11) Tobin MJ, editor. Physiologic basis of mechanical ventilation. Ann Am Thorac Soc [Internet]. 2018;15:S49–52. DOI 10.1513/AnnalsATS.201705-417KV.
(12) Milic-Emili J, editor. Applied Physiology in Respiratory Mechanics. Milano: Springer Milan; 1998. 223 p.
(13) Harris RS. Pressure volume curves. Respir Care [Internet]. 2005;50(1):78–99. PMID: 15636647.
(14) Kumar KR, Kirsch RE, Hornik CP. Cardiovascular physiology for intensivists. Crit Hear Dis Infants Child [Internet]. 2019;111-133.e5. DOI https://doi.org/10.1016/B978-1-4557-0760-7.00013-9.
(15) Hess DR, Bigatello LM. The chest wall in acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care [Internet]. 2008 Feb;14(1):94–102. DOI 10.1097/MCC.0b013e3282f40952.
(16) Desai JP, Moustarah F. Pulmonary Compliance [Internet]. Stat Pearls. 2020 [Citado oct 11 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK538324
(17) Lucangelo U, Bernabé F, Blanch L. Respiratory mechanics derived from signals in the ventilator circuit. Respir Care [Internet]. 2005;50(1):55–65. PMID: 15636645.
(18) Foti G, Cereda M, Banfi G, Pelosi P, Fumagalli R, Pesenti A. End-inspiratory airway occlusion: A method to assess the pressure developed by inspiratory muscles in patients with acute lung injury undergoing pressure support. Am J Respir Crit Care Med [Internet]. 1997 Oct;156(4 PART I):1210–6. DOI 10.1164/ajrccm.156.4.96-02031.
(19) Cairo JM. Pilbeam’s mechanical ventilation: physiological and clinical applications. 6th ed. Missouri: Elsevier; 2016. 571 p.
(20) D’Angelo E, Robatto FM, Calderini E, Tavola M, Bono D, Torri G, et al. Pulmonary and chest wall mechanics in anesthetized paralyzed humans. J Appl Physiol (1985) [Internet]. 1991;70(6):2602–10. DOI 10.1152/jappl.1991.70.6.2602.
(21) Aliverti A, Dellacà R, Lo Mauro A, Carlesso E, Del Frate W, Pelosi P, et al. Effects of PEEP and tidal volume on elastances and distribution of volume changes of the different chest wall compartments. Crit Care [Internet]. 2000;4(1):P121. DOI 10.1186/cc841.
(22) Nava S, Rubini F. Lung and chest wall mechanics in ventilated patients with end stage idiopathic pulmonary fibrosis. Thorax [Internet]. 1999;54(5):390–5. DOI 10.1136/thx.54.5.390.
(23) Guerin C, Coussa ML, Eissa NT, Corbeil C, Chasse M, Braidy J, et al. Lung and chest wall mechanics in mechanically ventilated COPD patients. J Appl Physiol (1985) [Internet]. 1993;74(4):1570–80. DOI 0.1152/jappl.1993.74.4.1570.
(24) Grinnan DC, Truwit JD. Clinical review: Respiratory mechanics in spontaneous and assisted ventilation. Crit Care [Internet]. 2005;9(5):472–84. DOI 10.1186/cc3516.
(25) Lanteri CJ, Petak F, Gurrin L, Sly PD. Influence of inertance on respiratory mechanics measurements in mechanically ventilated puppies. Pediatr Pulmonol [Internet]. 1999 Aug;28(2):130–8. PMID: 10423313.
(26) Jain M, Sznajder JI. Bench-to-bedside review: Distal airways in acute respiratory distress syndrome. Crit Care [Internet]. 2007;11(1):206. DOI 10.1186/cc5159.
(27) Malbrain MLNG, Deeren D, De Potter TJR. Intra-abdominal hypertension in the critically ill: it is time to pay attention. Curr Opin Crit Care [Internet]. 2005 Apr;11(2):156–71.DOI 10.1097/01.ccx.0000155355.86241.1b.
(28) Boron WF, Boulpaep EL. Medical physiology. 3rd ed. Philadelphia: Elsevier; 2016. 11312 p.
(29) Davidson AC. The pulmonary physician in critical care 11: Critical care management of respiratory failure resulting from COPD. Thorax [Internet]. 2002 Dec;57(12):1079–84. DOI 10.1136/thorax.57.12.1079.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Iatreia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Papers published in the journal are available for use under the Creative Commons license, specifically Attribution-NonCommercial-ShareAlike 4.0 International.
The papers must be unpublished and sent exclusively to the Journal Iatreia; the author uploading the contribution is required to submit two fully completed formats: article submission and authorship responsibility.