Estudio cinético de la fotooxidación del 4-clorofenol con oxígeno singulete generado por la tetra(4-carboxifenil)porfirina adsorbida sobre dióxido de silicio
DOI:
https://doi.org/10.17533/udea.redin.12461Palabras clave:
oxígeno singulete, porfirina, silica, fotooxidación, 4-clorofenol, cinética Langmuir-HinshelwoodResumen
La fotooxidación del 4-clorofenol con oxígeno singulete fue estudiada en solución acuosa. Las reacciones fueron realizadas, en un sistema heterogéneo, usando la tetra(4-carboxifenil)porfirina adsorbida sobre dióxido de silicio (TcPPH/SiO2) como sensibilizador. La fotogeneración de oxígeno singulete producido por la TcPPH/SiO2 con luz visible fue analizada por resonancia paramagnética electrónica (EPR) usando la técnica de spin trapping. La hidroquinona y benzoquinona fueron identificados por HPLC como los productos principales de la reacción de fotooxidación. La fotooxidación catalítica del 4-clorofenol sigue una cinética global de Langmuir-Hinshelwood.
Descargas
Citas
A. Olaniran, E. Igbinosa. “Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes”. Chemosphere. Vol. 83. 2011. pp. 1297- 1306. DOI: https://doi.org/10.1016/j.chemosphere.2011.04.009
C. Paisio, P. González, A. Gerbaudo, M. Bertuzzi, E. Agostini. “Toxicity of phenol solutions treated with rapeseed and tomato hairy roots”. Desalination. Vol. 263. 2010. pp. 23-28. DOI: https://doi.org/10.1016/j.desal.2010.06.029
N. Kartal, M. Sökmen. “New catalyst systems for the degradation of chlorophenols”. Desalination. Vol. 281. 2011. pp. 209-214. DOI: https://doi.org/10.1016/j.desal.2011.07.066
X. Zhao, T. Xu, W. Yao, C. Zhang, Y. Zhu. “Photoelectrocatalytic degradation of 4-chlorophenol at Bi2 WO6 nanoflake film electrode under visible light irradiation”. Applied Catalysis B: Environmental. Vol. 72. 2007. pp. 92-97. DOI: https://doi.org/10.1016/j.apcatb.2006.10.006
V. García, J. Kallas, S. Esplugas. “Wet oxidation of 4-chlorophenol: Kinetic study”. Chemical Engineering Journal. Vol. 126. 2007. pp. 59-65. DOI: https://doi.org/10.1016/j.cej.2006.05.022
M. Muñoz, Z. de Pedro, J. Casas, J. Rodriguez “Assessment of the generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions”. Journal of Hazardous Materials. Vol. 190. 2011. pp. 993-1000. DOI: https://doi.org/10.1016/j.jhazmat.2011.04.038
M. Fukushima, Y. Ishida, S. Shigematsu, H. Kuramitz, S. Nagao. “Pattern of oxidation products derived from tetrabromobisphenol A in a catalytic system comprised of iron(III)-tetrakis(p-sulfophenyl)porphyrin, KHSO5 and humic acids”. Chemosphere. Vol. 80. 2010. pp. 860-865. DOI: https://doi.org/10.1016/j.chemosphere.2010.05.041
M. Chang, Y. Hsieh, T. Cheng, K. Yao, M. Wei, C. Chang. “Photocatalytic degradation of 2,4-dichlorophenol wastewater using porphyrin/TiO2 complexes activated by visible light”. Thin Solid Films. Vol. 517. 2009. pp. 3888-3891. DOI: https://doi.org/10.1016/j.tsf.2009.01.175
J. Mosinger, M. Deumie, K. Lang, P. Kubat, D. Wagnerova. “Supramolecular sensitizer: complexation of meso-tetrakis(4-sulfonatophenyl)porphyrin with 2-hydroxypropyl-cyclodextrins”. Journal of Photochemistry and Photobiology A: Chemistry. Vol. 130. 2006. pp. 13-20. DOI: https://doi.org/10.1016/S1010-6030(99)00204-X
F. Ruyffelaere, V. Nardello, R. Schmidt, J. Aubry. “Photosensitizing properties and reactivity of aryl azo naphtol dyes towards singlet oxygen”. Journal of Photochemistry and Photobiology A: Chemistry. Vol. 186. 2006. pp. 98-105. DOI: https://doi.org/10.1016/j.jphotochem.2006.02.029
K. Lang, D. Wagnerová, J. Brodilová. “The role of excited states in the photosensitized oxidation of substrates with dioxygen”. Journal of Photochemistry and Photobiology A: Chemistry. Vol. 72. 1993. pp. 9-14. DOI: https://doi.org/10.1016/1010-6030(93)85078-M
W. Zheng, N. Shan, L. Yu, X. Wang “UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins”. Dyes and Pigments. Vol. 77. 2008. pp. 153-157. DOI: https://doi.org/10.1016/j.dyepig.2007.04.007
C. Tanielian, D. Wolff. “Porfirina sensibilizadas generación de oxígeno singlete molecular: Comparación de los métodos de estado estacionario y resueltas en el tiempo”. J. Phys. Chem. Vol. 99. 1995. pp. 9825.
T. Ogunbayo, T. Nyokong. “Photocatalytic transformation of chlorophenols under homogeneous and heterogeneous conditions using palladium octadodecylthio phthalocyanine”. Journal of Molecular Catalysis A: Chemical. Vol. 350. 2011. pp. 49-55. DOI: https://doi.org/10.1016/j.molcata.2011.09.003
E. Silva, M. Pereira, H. Burrows, M. Azenha, M. Sarakha, M. Bolte “Photooxidation of 4-chlorophenol sensitized by iron meso-tetrakis(2,6-dichloro3-sulfophenyl)porphyrin in aqueous solution”. Photochemical and Photobiological Sciences. Vol. 3. 2004. pp. 200-204. DOI: https://doi.org/10.1039/b308975d
R. Giovannetti, L. Alibabaei, L. Petetta. “Aggregation behaviour of a tetracarboxylic porphyrin in aqueous solution”. Journal of Photochemistry and Photobiology A: Chemistry. Vol. 211. 2010. pp. 108-114. DOI: https://doi.org/10.1016/j.jphotochem.2010.02.003
A. Harriman, G. Poter, M. Richoux. “Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen”. Coordination Chemistry Reviews. Vol. 44. 1982. 83-126. DOI: https://doi.org/10.1016/S0010-8545(00)80518-4
S. Ribeiro, A. Serra, A. Rocha. “Immobilised porphyrins in monoterpene photooxidations”. Journal of Catalysis. Vol. 256. 2008. pp. 331-337. DOI: https://doi.org/10.1016/j.jcat.2008.04.001
K. Christoforidis, M. Louloudi, E. Milaeva, Y. Deligiannakis. “Mechanism of catalytic decomposition of pentachlorophenol by a highly recyclable heterogeneous SiO2 –[Fe-porphyrin] catalyst”. Journal of Catalysis. Vol. 270. 2010. 153-162. DOI: https://doi.org/10.1016/j.jcat.2009.12.016
B. Agboola, K. Ozoemena, T. Nyokong. “Comparative efficiency of immobilized non-transition metal phthalocyanine photosensitizers for the visible light transformation of chlorophenols”. Journal of Molecular Catalysis A: Chemical. Vol. 248. 2006. pp. 84-92. DOI: https://doi.org/10.1016/j.molcata.2005.12.009
P. Zucca, G. Mocci, A. Rescigno, E. Sanjust. “5,10,15,20-Tetrakis(4-sulfonato-phenyl)porphineMn(III) immobilized on imidazole-activated silica as a novel lignin-peroxidase-like biomimetic catalyst”. Journal of Molecular Catalysis A: Chemical. Vol. 278. 2007. pp. 220-227. DOI: https://doi.org/10.1016/j.molcata.2007.09.017
S. Jagtap, V. Raje, S. Samant, B. Bhanage. “Silica supported polyvinyl pyridine as a highly active heterogeneous base catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides”. Journal of Molecular Catalysis A: Chemical. Vol. 266. 2007. pp. 69-74. DOI: https://doi.org/10.1016/j.molcata.2006.10.033
J. Husheng, H. Wensheng, W. Liqiao, X. Bingshe, L. Xuguang. “The structures and antibacterial properties of nano-SiO2 supported silver/zinc–silver materials”. Dental Materials. Vol. 24. 2008. pp. 244-249. DOI: https://doi.org/10.1016/j.dental.2007.04.015
L. Wenbo, L. Yonglan, C. Guohui, S. Xuping. “Synthesis of functional SiO2 -coated graphene oxide nanosheets decorated with Ag nanoparticles for H2 O2 and glucose detection”. Biosensors and Bioelectronics. Vol. 26. 2011. pp. 4791-4797. DOI: https://doi.org/10.1016/j.bios.2011.06.008
C. Lambert, E. Reddi, J. Spikes, M. Rodgers, G. Jori. “The effects of porphyrin structure and aggregation state on photosensitized processes in aqueous and micellar media”. Photochemistry and Photobiology. Vol. 44. 1986. pp. 595-601. DOI: https://doi.org/10.1111/j.1751-1097.1986.tb04714.x
A. Adler, F. Longo, J. Finarelli, J. Goldmacher, J. Assour, L. Korsakof. “A simplified synthesis for meso-tetraphenylporphyrin”. The Journal of Organic Chemistry. Vol. 32. 1967. pp. 476-477. DOI: https://doi.org/10.1021/jo01288a053
M. Trytek, M. Majdan, A. Lipke, J. Fiedurek. “Sol–gel immobilization of octaethylporphine and hematoporphyrin for biomimetic photooxidation of a-pinene”. Journal of Catalysis. Vol. 286. 2012. pp. 193-205. DOI: https://doi.org/10.1016/j.jcat.2011.11.005
H. Akasaka, Y. Yukutake, Y. Nagata, T. Funabiki, T. Mizutani, H. Takagi, Y. Fukushima, L. Juneja, H. Nanbu, K. Kitahata. “Selective adsorption of biladienab-one and zinc biladien-ab-one to mesoporous silica”. Microporous Mesoporous Mater. Vol. 120. 2009. pp. 331-338. DOI: https://doi.org/10.1016/j.micromeso.2008.11.025
M. Trytek, J. Fiedurek, A. Lipke, S. Radzki. “Porphyrins incorporated to SiO2 gels as fluorescent materials and efficient catalysts in biomimetic photocatalytic systems”. Journal of Sol-Gel Science and Technology. Vol. 51. 2009. pp. 272-286. DOI: https://doi.org/10.1007/s10971-009-1981-7
Y. Lion, M. Delmelle, A. Van de Vorst. “New method of detecting singlet oxygen production”. Nature. Vol. 263. 1976. 442-443. DOI: https://doi.org/10.1038/263442a0
C. Hadjur, A. Jeunet, P. Jardon. “Photosensitization by hypericin: electron spin resonance (ESR) evidence for the formation of singlet oxygen and superoxide anion radicals in an in vitro model”. Journal of Photochemistry and Photobiology B: Biology. Vol. 26. 1994. pp. 67-74. DOI: https://doi.org/10.1016/1011-1344(94)85037-2
P. Kluson, M. Drobek, T. Strasak, J. Krysa, M. Karaskova, J. Rakusan. “Sulphonated phthalocyanines as effective oxidation photocatalysts for visible and UV light regions”. Journal of Molecular Catalysis A: Chemical. Vol. 272. 2007. pp. 213-219. DOI: https://doi.org/10.1016/j.molcata.2007.03.024
F. Wilkinson, W. Helman, A. Ross. “Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation”. Journal of Physical and Chemical Reference Data. Vol. 22. 1993. pp. 663-677. DOI: https://doi.org/10.1063/1.555965
Q. Song, T. Niu, H. Wang. “Theoretical study of the reaction of 2,4-dichlorophenol with 1 O2 ”. Journal of Molecular Structure: THEOCHEM. Vol. 861. 2008. pp. 27-32. DOI: https://doi.org/10.1016/j.theochem.2008.04.008
J. Matxain, M. Ristilä, Å. Strid, L. Eriksson. “Theoretical Study of the Reaction of Vitamin B6 with 1 O2 ”. Chemistry - A European Journal. Vol. 13. 2007. pp. 4636-4638. DOI: https://doi.org/10.1002/chem.200700002
R. Gerdes, D. Wohrle, W. Spiller, G. Schneider, G. Schnurpfeil, G. Schulz-Ekloff. “Photo-oxidation of phenol and monochlorophenols in oxygen-saturated aqueous solutions by different photosensitizers”. Journal of Photochemistry and Photobiology A: Chemistry. Vol. 11. 1997. pp. 65-74. DOI: https://doi.org/10.1016/S1010-6030(97)00209-8
C. Li, M. Hoffman. “Oxidation of Phenol by Singlet Oxygen Photosensitized by the Tris(2,2‘-bipyridine) ruthenium(II) Ion”. Journal Physical Chemistry A. Vol. 104. 2000. pp. 5998-6002. DOI: https://doi.org/10.1021/jp9937104
H. Wu, C. Cui, Q. Song, H. Wang, A. Wu. “Theoretical study of the peroxidation of chlorophenols in gas phase and aqueous solutions”. Journal of Molecular Structure: THEOCHEM. Vol. 916. 2009. pp. 86-90 DOI: https://doi.org/10.1016/j.theochem.2009.09.014
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista Facultad de Ingeniería
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.